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Fig. 1. Snakes on a Plane. Given an intricate surface with complex topology, our algorithm generates a curve (63,000 nodes) that completely covers the surface
while avoiding intersections in under one minute.

We introduce a fast, robust, and user-controllable algorithm to generate

surface-filling curves. We compute these curves through the gradient flow

of a simple sparse energy, making our method several orders of magnitude

faster than previous works. Our algorithm makes minimal assumptions

on the topology and resolution of the input surface, achieving improved

robustness. Our framework provides tuneable parameters that guide the

shape of the output curve, making it ideal for interactive design applications.
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1 INTRODUCTION
A surface-filling curve is a continuous map from a one-dimensional

space onto a two-dimensional manifold, which guarantees that ev-

ery point on the surface lies within a given maximum distance of

the curve (see Figure 1). In computer graphics, these curves have

primarily been leveraged for digital fabrication and artistic creation;

yet, their applicability extends to a variety of fields, including robotic

path planning, sensor placement, circuit design, and more. Nonethe-

less, despite their significant potential, existing methods suffer from

slow computation time, robustness issues, and limited user control.

We introduce a fast, robust, and controllable algorithm to generate

surface-filling curves. We model the problem through a two-term

energy that balances curve length and distance to the curve’s me-

dial axis. Instead of computing the medial axis explicitly, we only
implicitly compute the distance to it, making it ideal for speed and

input

Fig. 2. We compute surface-filling curves through a geometric flow that
evolves to balance total length with distance to the curve’s medial axis.
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Fig. 3. Surface-filling curves can potentially be used in applications like
robotic path planning for tasks including painting or polishing surfaces.

robustness. The gradient of this energy yields a geometric flow that

evolves any input curve into a surface-filling one (see Figure 2),

which is efficiently evaluated by solving a sparse linear system with

size proportional to the number of nodes in the curve.

Recently, the Repulsive Curves algorithm [Yu et al. 2021] showed

applications to this problem, generating curves constrained to sim-

ple surfaces with a physically-inspired energy. While that method

must deal with a dense linear system solve at each iteration, our

method produces qualitatively similar results via sparse ones, lead-
ing to a speed-up of several orders of magnitude. Combined with

this massive performance improvement, our algorithm’s superior

robustness enables curve generation on a broader set of surfaces

with diverse styles, resolutions, and topologies. Together with its

speed and robustness, our high degree of user control makes it ideal

for interactive applications in which a designer may wish to change

the spacing of the curve, align it to a given density map or vector

field, or even edit the underlying surface.

We showcase the performance of our method by testing it on a

diverse set of inputs inspired by a broad range of contexts. We ex-

tensively evaluate our algorithmic choices through ablation studies

and include experiments showing the effect of the different param-

eters in our energy formulation. Our flow’s significant improved

performance enables a whole new set of applications, which we

exemplify through results in which a user can interactively specify

the curve’s global shape, local density, and alignment.

2 RELATED WORK
Surface-filling curves are a special case of space-filling curves that fill
a given 𝑑-dimensional domain with one continuous stroke without

self-intersections (e.g., [Hilbert 1891; Peano 1890]). Over the past

decades, space-filling curves have received renewed interest from

computer graphics researchers due to their applications ranging

from infill patterns for 3D printing [Chermain et al. 2023] to toolpath

planning for CNC milling [Zhao et al. 2018] and procedural art

[Pedersen and Singh 2006]. To address these applications, a key

challenge lies in filling out intricate 2D shapes or 3D surfaces instead

of simpler geometries (e.g., spheres [Gerlach and von der Mosel

2011]). We classify such methods into two subclasses: initialization-

based methods and geometric flows. We also show a feature table

of methods that can compute surface-filling curves in Table 1.

2.1 Initialization-based methods for space-filling curves
Initialization-based methods begin by searching for an approxima-

tion near the optimal state, often followed by a local relaxation of the

curve to determine its final form. These methods can be categorized

as either discrete or continuous.
Discrete approaches begin by expressing the domain as a finite

set of points [Giannatsis et al. 2015], clusters [Yan and Mostofi

2016], grid cells [Cheng et al. 2020; Joshi et al. 2019] or more general

polygonal elements [Akleman et al. 2013; Bedel et al. 2022; Lin

et al. 2019; Xing et al. 2012] with some notion of adjacency. This

representation is then treated as a graph on which a Hamiltonian

cycle is computed or approximated, often followed by some local,

geometric post-processing in the form of smoothing [Xing et al.

2012] or alignment to a given vector field [Bedel et al. 2022].

Among discrete approaches, the most relevant for our work is

the surface-filling curve generation method by Xing et al. [2012]

and the follow-up work by Akleman et al. [2013]. They compute

a Hamiltonian cycle on the dual graph of any input surface mesh,

followed by optional subdivision and smoothing. By construction,

these algorithms are heavily dependent on the input triangulation

and provide little to no user control in terms of curve spacing,

alignment, and overall shape.

Continuous approaches to space-filling curve generation directly

model the curve as a smooth, geometric object on the input do-

main. A subclass of continuous methods extracts the iso-contours

of a continuous function, such as a distance transform [Zhao et al.

2016, 2018], periodic function [Fang et al. 2020; Tricard et al. 2021],

cylindrical parametrization [Schüller et al. 2018], or simply the z-

coordinates [Zhong et al. 2023]. However, they must carefully stitch

disconnected components (see, e.g., [Chermain et al. 2023]) or man-

ually segment the mesh into cylindrical pieces (see [Schüller et al.

2018]) to ensure a true single-stroke filling curve.

To escape the inherent problems in initialization-based methods,

we instead opt for growing curves from arbitrary initializations via

geometric flows.

2.2 Geometric flows for space-filling curves
Geometric flows evolve a geometry by following the variational

gradient of some energy functional [Brakke 1992]. The most basic

example is curve-shortening flows, in which the curve evolves to

minimize its own length. Often combined with area-preservation

[Sharp and Crane 2018]

Ours

#V = 642 #V = 42

mesh resolution coarsefine

#V = 10K

Fig. 4. Unlike the distortion-minimizing flow by Sharp and Crane [2018],
our algorithm is robust to changes in underlying mesh resolution.

ACM Trans. Graph., Vol. 43, No. 4, Article . Publication date: July 2024.



Surface-Filling Curve Flows via Implicit Medial Axes • 3

Table 1. Previous methods fall short in one way or another.

Custom penalties Low-res meshes Spacing control Unicursality Mesh-surgery-free

[Xing et al. 2012] ✗ ✗ ✗ ✓ ✓

[Akleman et al. 2013] ✗ ✗ ✗ ✓ ✓

[Schüller et al. 2018] ✗ ✓ ✓ ✓ ✗

[Zhao et al. 2018] ✗ ✓ ✓ ✗ ✗

[Sharp and Crane 2018] ✓ ✗ ✗ ✗ ✗

[Yu et al. 2021] ✓ ✗ ✗ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

terms [Crane et al. 2013] or modified to avoid singularities [Kazhdan

et al. 2012], variants of this flow have become common in geometry

processing tasks like smoothing [Taubin 1995] and even morpho-

logical operations [Sellán et al. 2020].

To the best of our knowledge, only two prior works have sug-

gested using geometric flows to compute surface-filling curves. First,

Sharp and Crane [2018] observed that their conformality-inducing

flow serendipitously produced surface-filling curves if the weight

on the length penalization was low enough. While an impressive

offshoot result, this method suffers from robustness issues at low

mesh resolutions (see Figure 4) and the inability to handle open

curves.

More recently, Yu et al. [2021] proposed following the gradient

flow of a physics-inspired repulsive energy between every discon-

nected pair of points on the curve. The authors followed a rigorous

mathematical derivation and introduced a modification of gradient

descent combined with a multi-grid scheme to evolve the curve

according to the proposed energy. While this mathematical and

computational machinery makes their algorithm tractable, by con-

sidering an energy defined between every pair of points, their en-

ergy is fundamentally dense. Although they provide a hierarchical

multigrid solver to circumvent dense linear solves, the linear solves

associated with each level of the hierarchy still remain a bottleneck.

In this paper, we build on the work by Yu et al. [2021] and show

that this repulsive energy can be substituted by a simple geometric

proxy based on the distance from each point on the curve to its

medial axis. As we show in Figure 5 and empirically throughout the

paper, this substitution produces qualitatively similar results while

[Yu et al. 2021] Ours

number of nodes

runtime per iteration [ms]

[Yu et al. 2021]
w/o multigrid

[Yu et al. 2021]
w/ multigrid

Ours

Fig. 5. We qualitatively match the results produced by Yu et al. [2021] (top
left), but instead of a dense linear system solve, we only need a sparse
one whose entries are banded near the diagonals (bottom left), providing
several digits of speed-up (right). See Appendix C for details on runtime
measurement.

critically converting the dense solve into a sparse one, obtaining a

massive speed-up and enabling a broader set of applications.

3 METHOD
Inwhat follows, let us assume that we are given a surfaceΩ ∈ R3 and
a curve 𝛾 : [0, 𝑙] ↦→ Ω ∈ R3 on it. We define a consistent frame on 𝛾

as follows: at any point 𝛾 (𝑠) on 𝛾 , 𝑇 (𝑠) is the (unit) tangent vector
to the curve, 𝑁 (𝑠) is the (orthogonal) normal vector to the surface

at 𝛾 (𝑠) and 𝐵(𝑠) is the (unit) bitangent vector, which is defined as

𝐵(𝑠) = 𝑇 (𝑠) × 𝑁 (𝑠). We will use the notation ∥𝑎 − 𝑏∥Ω to denote

the geodesic distance between two points 𝑎, 𝑏 ∈ Ω, and ∥𝑎 − 𝑏∥ to
denote the Euclidean distance between two points 𝑎, 𝑏 ∈ R3.
Our goal will be to find another curve 𝛾★ that fills Ω with some

radius 𝑟 ; that is, for any point 𝑝 ∈ Ω, there exists a point 𝑞 ∈
𝛾★ such that ∥𝑝 − 𝑞∥Ω ≤ 𝑟 . We will do this by constructing an

energy functional 𝐸 (𝛾) and iteratively minimizing it with respect

to 𝛾 starting from some initial curve 𝛾0.

3.1 Energy construction
To motivate our choice of energy, we will start from the very defini-

tion of a surface-filling curve stated above: for any point 𝑝 ∈ Ω, there
must exist a point 𝑞 ∈ 𝛾★ such that ∥𝑝 − 𝑞∥Ω ≤ 𝑟 . Let us now briefly

consider the minimum distance function𝑑 (𝑝,𝛾) = min𝑞∈𝛾 ∥𝑝 − 𝑞∥Ω
as a function of 𝑝 . We can then rephrase the surface-filling condi-

tion as: for any point 𝑝 ∈ Ω, its minimum distance to the curve is

below 𝑟 . 𝑑 (𝑝,𝛾) being a continuous function of 𝑝 , it is sufficient to

impose this condition on the points 𝑝 ∈ Ω at which 𝑑 (𝑝,𝛾) is locally
maximized, and they always lie on the medial axis of 𝛾 on Ω, which
we denote M𝛾,Ω . In other words, 𝛾 is a surface-filling curve if for

every point 𝑝 on the medial axis M𝛾,Ω , its distance to the curve is

below 𝑟 .

We will now define a mapping

from [0, 𝑙] to M𝛾,Ω , which will al-

low us to restate the surface-filling

condition in terms of the curve 𝛾

itself. The key observation here is

that we only need the distance to

the medial axis rather than its ex-

plicit graph. For every 𝑠 ∈ [0, 𝑙],
we will grow a (geodesic) sphere

of radius 𝑟 tangent at 𝛾 (𝑠) until it touches a different point on 𝛾 (see

inset). The center of this maximal sphere is, by definition, an element

of the medial axis𝑚(𝑠). In fact, one can grow two such spheres, one
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input
(1) energy assembly using

implicit medial axes
(4) dynamic refinement final result

iterate

(2) descent direction
computation

(3) retraction &
self-intersection avoidance

Fig. 6. We obtain a surface-filling curve by iteratively growing an input curve through a geometric flow. At each iteration, we efficiently assemble a quadratic
energy, compute its retracted descent direction on the surface, and evolve the curve along it, dynamically refining it to maintain a homogeneous discretization.

in the direction of 𝐵(𝑠) and one in the opposite direction −𝐵(𝑠), lead-
ing to two (not necessarily distinct) points𝑚+ (𝑠),𝑚− (𝑠) ∈ M𝛾,Ω ,

which we call the implicit medial axis. When one of the spheres

grows infinitely (e.g., a completely convex curve), we clamp the

distances to a parameter 𝑟𝑚𝑎𝑥 .

These mappings 𝑚+,𝑚−
: [0, 𝑙] ↦→ M𝛾,Ω are not necessarily

injective, but they are surjective: as a direct consequence of the

definition of medial axis, every element in it is the image through

one (or both) of𝑚+
or𝑚−

of at least one value of 𝑠 . Thus, we can

now rephrase the surface-filling condition as a condition on the

curve: 𝛾 is surface-filling if for every 𝑠 ∈ [0, 𝑙],
𝛾 (𝑠) −𝑚+ (𝑠)


Ω ≤ 𝑟

and ∥𝛾 (𝑠) −𝑚− (𝑠)∥Ω ≤ 𝑟 . This reformulation is critical, as it allows

us to define the curve’s medial axis energy as

𝐸𝑀 =

∫
𝛾

(𝛾 (𝑠) −𝑚+ (𝑠)
2
Ω + ∥𝛾 (𝑠) −𝑚− (𝑠)∥2Ω

)
𝑑𝑠. (1)

Since it accumulates the distance values in an 𝐿2 sense, we can

expect that progressively minimizing this energy will concentrate

the medial axis distances around an increasingly smaller value. Of

course, there is an infinite number of curves that satisfy the surface-

filling constraint as defined above. A reasonable choice between all

of them is the shortest one, which we can enforce by adding a term

𝐿Ω (𝛾) measuring the total (geodesic) length to the energy

𝐸 = 𝐿Ω (𝛾) + 𝛼𝐸𝑀 , (2)

where 𝛼 is a balancing coefficient, which we will later show to be

related to the desired curve width 𝑟 . Eq. (2) is our final analytical en-

ergy, which we will now discretize in the form of a sparse quadratic

form that one can efficiently assemble.

3.2 Discretization piecewise
linear

piecewise
geodesic

Let us assume that Ω is given as

a triangular mesh with vertices

V and faces F . Instead of exist-

ing representations (e.g., [Bischoff

et al. 2005]),we represent 𝛾 as a

piecewise geodesic curve by storing it as a set of 𝑛 nodes 𝛾 =

{𝛾1, 𝛾2, . . . , 𝛾𝑛} that are connected by geodesic segments onΩ (see in-

set). Beyond manifoldness, we make no assumption on the topology

or connectivity of 𝛾 (see Figure 10) or Ω (see Figure 9 or Figure 12).

In what follows, we refer to elements in the underlying surface as

#nodes=180K

Fig. 7. Our method is fast enough to obtain surface-filling curves with
hundreds of thousands of nodes (180K) in a reasonable time (229 s).

vertices and faces whereas elements in the curve as nodes and seg-
ments. Each node 𝛾𝑖 is equipped with the vertex-blended normal 𝑁𝑖 ,

the normalized bisection tangent𝑇𝑖 projected onto its tangent plane,

and their cross product 𝐵𝑖 . As noted by Sharp and Crane [2020],

these geodesic segments are intrinsic; i.e., they are independent of

how the surface patch containing the segment is embedded in R3.
We will begin by making use of this property to approximate the

curve length via a quadratic form.

3.2.1 Curve length. Consider the geodesic segment between 𝛾𝑖 and

𝛾𝑖+1, which we denote𝛾𝑖,𝑖+1, with geodesic length 𝑙𝑖 . Let 𝑅𝑖 (𝛾) be the
(unique) rigid transformation that maps 𝛾𝑖 to the origin 0 and aligns

the tangent vector𝑇𝑖 with the 𝑥-axis and the normal vector 𝑁𝑖 with

rigid
transformation

the 𝑧-axis, and let 𝑄𝑖 (𝛾) be the rigid

transformation that maps 𝛾𝑖,𝑖+1 to the

point (𝑙𝑖 , 0, 0), similarly aligning the tan-

gent vector 𝑇𝑖+1 with the 𝑥-axis and the

normal vector 𝑁𝑖+1 with the 𝑧-axis. In-

tuitively, these are the rigid transforma-

tions one would obtain from unrolling all
the triangles in the surface patch contain-

ing 𝛾𝑖,𝑖+1 onto the plane (see inset).

Trivially, the geodesic distance be-

tween 𝛾𝑖 and 𝛾𝑖+1 is the Euclidean distance between 𝑅𝑖 (𝛾)𝛾𝑖 and
𝑄𝑖 (𝛾)𝛾𝑖+1 on the XY plane:

𝑙𝑖 = ∥𝛾𝑖 − 𝛾𝑖+1∥Ω = ∥𝑅𝑖 (𝛾)𝛾𝑖 −𝑄𝑖 (𝛾)𝛾𝑖+1∥2 . (3)

By assuming only small changes in 𝛾 , we can linearize the products

in Eq. (3) and multiply and divide by 𝑙𝑖 to write the length as a

ACM Trans. Graph., Vol. 43, No. 4, Article . Publication date: July 2024.
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Euclidean geodesic

curvedescent direction retraction

Fig. 8. The descent direction of Eq. (5) stays on the tangent plane of the
surface (right), allowing larger steps than merely evaluating the Euclidean
length between each node (left).

Fig. 9. Our method does not assume the topology or connectivity of the
underlying surface, which may be open and have boundaries.

input result (front) result (back)

Fig. 10. Our method does not assume the topology or connectivity of the
input curve and preserves it throughout the flow.

quadratic form in 𝛾𝑖 , 𝛾𝑖+1:

𝑙𝑖 ≈
1

𝑙𝑖
∥𝑅𝑖𝛾𝑖 −𝑄𝑖𝛾𝑖+1∥22 . (4)

Accumulating the length of every segment, we can now approximate

the curve length through a quadratic form on 𝜸 :

𝐿Ω (𝜸 ) ≈
𝑛−1∑︁
𝑖=1

1

𝑙𝑖
∥𝑅𝑖𝛾𝑖 −𝑄𝑖𝛾𝑖+1∥22 =

1

2

𝜸𝑇A𝜸 + ℓ𝜸 , (5)

where𝜸 is the vector of stacked coordinates of the curve nodes, A is

a sparse symmetric positive-semidefinite matrix of size 3𝑛 × 3𝑛, and

ℓ is a vector of size 3𝑛 that accounts for the translation component

in the rigid transformations. We observed that this approximation

allows larger steps than merely adding up the Euclidean distance

between 𝛾𝑖 and 𝛾𝑖+1 (see Figure 8).
Now that we have managed to approximate the curve length as a

quadratic form, we can proceed to do the same for the second half

of Eq. (2), the medial axis energy.

3.2.2 Medial axis energy. Recall that the medial axis energy is de-

fined as

𝐸𝑀 =

∫
𝛾

(𝛾 (𝑠) −𝑚+ (𝑠)
2
Ω + ∥𝛾 (𝑠) −𝑚− (𝑠)∥2Ω

)
𝑑𝑠 ,

where𝑚+ (𝑠) and𝑚− (𝑠) are the implicit medial axis, i.e., the two

points on the medial axis M𝛾,Ω that are closest to 𝛾 (𝑠).

Euclidean geodesic

Fig. 11. The implicit medial axis in Euclidean space is affected by curves on
nearby regions of the surface without local connectivity.

The most immediate question one faces when attempting to dis-

cretize 𝐸𝑀 is how to compute𝑚±
for a given curve node 𝛾𝑖 . It is

known that computing the explicit medial axis (i.e., the cut locus)

on curved surfaces often becomes tedious (see, e.g., [Mancinelli et al.

2021] Section 7), so we opt for computing the implicit medial axis

for each node. One could loop over every 𝛾 𝑗 , computing the largest

geodesic sphere that is tangent to both 𝛾𝑖 and 𝛾 𝑗 to then choose the

minimum radius among all of them. However, this approach would

lead to a quadratic complexity in the number of nodes, which is

prohibitive for large curves we wish to model (see Figure 7).

binary search

Instead, we once build a closest

point query data structure on the

curve nodes (and the boundary ver-

tices of the underlying mesh if they

exist) and then compute 𝑚+
𝑖
by car-

rying out a binary search on the ra-

dius of a sphere grown from 𝛾𝑖 in the

direction of 𝐵𝑖 until it lays within a

tolerance of a given node 𝛾 𝑗 and con-

tains no other node (see inset). We then repeat the same process for

𝑚−
, growing a sphere in the direction of −𝐵𝑖 instead.
The geodesic closest point query can be built upon any state-

of-the-art geodesic computation algorithm [Crane et al. 2020], but

substituting geodesic spheres with Euclidean spheres can make the

algorithm even faster. This substitution is a common operation in

geometry processing (e.g., [Yuksel 2015]). The Euclidean closest

point query can be built upon a bounding volume hierarchy, leading

to a time complexity of 𝑂 (log𝑛) per node and 𝑂 (𝑛 log𝑛) in total.

We note that all of the quantitative measurements in this paper

are based on the Euclidean medial axis. The tradeoff is that𝑚±
𝑖
is

not guaranteed to lie on the surface (see Figure 6 (1)), leading to

interference from nearby surfaces without local connectivity (see

Figures 11 or 12) or larger errors on high curvature regions (see

Figure 13). We note that the Euclidean medial axis is more suitable

in some situations regardless of the error, e.g., path planning for

3D printing where the filament has a constant width in Euclidean

space. We leave this choice to the user, depending on their desired

applications.

To discretize Eq. (1), we adopt the same idea as the curve length

to unroll the geodesic path between 𝛾𝑖 and 𝑚±
𝑖
onto the tangent

space of 𝛾𝑖 by: 𝛾𝑖 −𝑚±
𝑖


Ω =

𝛾𝑖 − (
𝛾𝑖 ± 𝑟±𝑖 𝐵𝑖

)
2
, (6)

where 𝑟+
𝑖
and 𝑟−

𝑖
are the sphere radii obtained by the binary search.

ACM Trans. Graph., Vol. 43, No. 4, Article . Publication date: July 2024.
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geodesicEuclidean

Fig. 12. Our method does not assume the topology or connectivity of the
underlying surface, which may be self-intersecting. We also observed that
the selection of Euclidean/geodesic space for the implicit medial axis affects
the result near the intersecting regions.

input approximation
error

Fig. 13. Our medial axis energy can be defined via Euclidean or geodesic
sphere radii, with the difference between these two being higher in high
curvature regions.

converged

Fig. 14. Our method preserves the inside/outside of the curve throughout
the flow.

By treating the unrolled implicit medial axis 𝑚′±
𝑖

= 𝛾𝑖 ± 𝑟±
𝑖
𝐵𝑖

as momentarily fixed for an optimization iteration and summing

contributions from each curve vertex, we approximate the medial

axis energy as:

𝐸𝑀 (𝜸 ) ≈
𝑛∑︁
𝑖=1

𝑙𝑖−1 + 𝑙𝑖
2

(𝛾𝑖 −𝑚′+
𝑖

2
2
+
𝛾𝑖 −𝑚′−

𝑖


2

)
, (7)

which is yet another quadratic form

𝐸𝑀 (𝜸 ) ≈ 1

2

𝜸𝑇M𝜸 + n𝜸 , (8)

where M is a symmetric matrix (see Appendix B for discussions on

this approximation).

By combining Eq. (5) and Eq. (8), we can now write the approxi-

mation of the energy from Eq. (2) as a quadratic form

𝐸 (𝜸 ) = 𝜸𝑇A𝜸 + ℓ𝜸 + 𝛼
1

2

𝜸𝑇M𝜸 + 𝛼n𝜸 =
1

2

𝜸𝑇H𝜸 + v𝜸 , (9)

where, notably, H is a sparse symmetric matrix.

3.3 Curve evolution
Given a discrete curve 𝜸𝑘 at the 𝑘-th timestep of the flow, we can

compute its approximated discretized energy 𝐸 (𝜸𝑘 ) by evaluating

Eq. (9). We can then compute the gradient of this energywith respect

to 𝜸𝑘 as g𝑘 = ∇𝐸 (𝜸𝑘 ) = H𝑘𝜸𝑘 + v𝑘 , and its Hessian as ∇2𝐸 (𝜸𝑘 ) =
H𝑘

. We can then use both these quantities to get the preconditioned

Table 2. Runtimes reported for several meshes. We kept iterating until the
average length of the descent direction per node went below 3 × 10

−4𝑟 .

Model Vertices Nodes (when converged) Iterations Runtime

Boot 19.9K 7.5K 41 8.8 s

Bunny 3.3K 11.2K 24 3.6 s

Fish 10.8K 4.7K 26 2.3 s

Hand 8.0K 10.2K 25 2.5 s

Spot 11.5K 3.0K 25 1.5 s

Springer 9.7K 16.1K 27 4.8 s

Stuffedtoy 6.7K 58.1K 32 17.3 s

descent direction via a single sparse linear system solve

d𝑘 = −(H𝑘 )−1g𝑘 . (10)

Of course, this coordinate-wise descent direction is not guaranteed

to keep the curve on the surface Ω, so we will need to instead com-

pute the retraction (see, e.g.,[Boumal 2023]) of the descent direction

onto Ω. Given the descent direction 𝑑𝑘
𝑖
for each node 𝛾𝑘

𝑖
, we com-

pute the retraction by finding the projection of 𝑑𝑘
𝑖
onto the tangent

plane of Ω at 𝛾𝑘
𝑖
, which we denote

ˆ𝑑𝑖𝑘 , and explicitly tracing the

geodesic path from 𝛾𝑘
𝑖
in the direction

ˆ𝑑𝑖𝑘 of length ∥ ˆ𝑑𝑖𝑘 ∥. Finally,
we reconnect the piecewise geodesic segments using a geodesic

computation algorithm. In practice, we find that the magnitude of

the descent is larger in the first iterations and then plateaus (see

Figure 16).

3.3.1 Self-intersection avoidance. To guarantee an intersection-free

output, we add a backtracking line search during our curve evolution.

After following the descent direction in its entirety, we loop over

every triangle and check that no two geodesic segments lying on

the same triangle intersect (this is easy enough to do, as geodesics

have the form of straight segments within each triangle). If they

do intersect, we multiply the descent direction by a coefficient 𝑐 ∈
[0, 1), evolve the curve, and start the check again. We continue

this procedure until the curve never causes self-intersection. This

procedure was necessary for all of the models we tested.

3.3.2 Dynamic refinement. Our computation of the medial axis

energy only considers distances between pairs of nodes; as such,

it relies heavily on the curve being finely discretized. Further, for

our curve evolution to find an optimal surface-filling disposition,

it needs to be provided with enough degrees of freedom during

the optimization. For these reasons, we follow the lead of other

flow-based approaches [Sellán et al. 2023, 2020] and use a dynamic

refinement scheme that adaptively subdivides the curve during the

flow: given a user-defined value ℎ, we collapse edges with lengths

smaller than ℎ and subdivide those larger than 2ℎ. We discuss the

effect of ℎ in Section 4.2.

4 EXPERIMENTS AND APPLICATIONS
Implementation details. We implemented our algorithm in C++

using GeometryCentral [Sharp et al. 2019] and libigl [Jacobson

et al. 2018] for common geometry processing subroutines, TinyAD

[Schmidt et al. 2022] for computing the Hessian in Eq. (10), knn-cpp

[Meyer 2019] for closest point queries, and the MMP algorithm

ACM Trans. Graph., Vol. 43, No. 4, Article . Publication date: July 2024.



Surface-Filling Curve Flows via Implicit Medial Axes • 7

densecoarse

Fig. 15. Our flow dynamically splits and collapses edges to maintain a user-
specified edge-length ℎ. In practice, we find our flow to be robust to this
parameter choice as long as it is below 𝑟/2.5.

average length of the descent direction

iteration

radius radius radius radius radius

Fig. 16. As the flow progresses, the magnitude of each descent diminishes
and the distance to the medial axis concentrates around a single value.

[Mitchell et al. 1987] to reconnect the geodesic segments. In Table 2,

we report the runtimes of several representative models in this

paper, which we have confirmed scales with O(𝑛1+𝑓 ), where 𝑓 > 0

accounts for the Laplacian-like sparse system solve. All our reported

runtimes were carried out on a 2022 M2 MacBook Air with 24GB of

RAM.

4.1 Comparisons
We compare the performance of our algorithm to both the first work

to suggest computing surface-filling curves through geometric flows

[Sharp and Crane 2018] (Figure 4) as well as to the most recent state-

of-the-art algorithm for this task [Yu et al. 2021] (Figure 5).

As we show in Figure 4, our algorithm presents a robustness and

mesh independence that is not present in the work by Sharp and

Crane [2018], allowing its use in a broader set of surfaces. Further,

as seen in Figure 5, by substituting the dense linear solve proposed

by Yu et al. [2021] for a sparse one, our algorithm provides massive

speed-ups in several orders of magnitude, enabling us to compute in-

tricate surface-filling curves with hundreds of thousands of vertices

(see, e.g., Figures 1 and 7).

This performance improvement comes at a theoretical cost in the

form of the approximations carried out in Section 3.2.2; however, as

we exhaustively show in the rest of this section, these approxima-

tions do not seem to have a significant impact on the quality of the

curves produced by our algorithm.

4.2 Experiments and ablations
As we illustrate in Figure 6, our algorithm works by iteratively

following the surface-retracted gradient of the energy in Eq. (2).

In general, as shown qualitatively in Figure 2 and numerically in

Figure 16, we find that the first iterations of the flow tend to produce

highest bin in the radius histogram

Fig. 17. We find an empirical relation between the energy weight 𝛼 and
the curve thickness (here computed as the highest bin in the medial axis
distance histogram) that is consistent across input surfaces and curves.

radius radius radius

Fig. 18. Given the observed relation in Figure 17, a user can specify the
desired surface-filling thickness through the parameter 𝛼 .

the largest changes in the curve followed by a gradual convergence

to a surface-filling curve whose medial axis distances are clustered

around a value 𝑟 .

A key parameter in this energy is the balancing coefficient 𝛼 ,

which we find serves as a proxy for the thickness 𝑟 of the final

surface-filling curve. Experimentally, we find the relation 𝑟 ≈ 1.68/
√
𝛼 ,

which appears to be consistent across different curve shapes, thick-

nesses, and underlying meshes (Figure 18). This matches the di-

mensional units of Eq. 2, where 𝛼 is presumed to have a dimension

of inverse squared length. While a theoretical derivation of this

relation escapes us, as shown in Figure 17, one can still utilize it to

specify the width of the curve by simply changing 𝛼 .

Our algorithm also requires the specification of two other pa-

rameters; namely, the target segment length ℎ and the maximum

sphere size 𝑟𝑚𝑎𝑥 . As shown in Figure 15, we find that our algorithm

is invariant to the selection of ℎ as long as ℎ < 𝑟/2.5. Similarly, as

shown in Figure 19, we find that 𝑟𝑚𝑎𝑥 can be set to any value larger

than 10𝑟 without too significantly affecting the shape of the final

curve, with values between 2𝑟 and 10𝑟 producing curves with less

pronounced wriggles.

4.3 User control
Our method’s robustness makes it ideal for interactive applications

where a user or designer may want to explore different curves,

surfaces, or parameters. This application guides our algorithmic

design even from a fundamental theoretical level; we make only

minimal (manifoldness) assumptions on the topology of the input

surface and curve (see Figures 9, 12, and 10). Also, as shown in Figure

20, its performance can accommodate even realtime deformation of

the underlying surface while running the flow.

ACM Trans. Graph., Vol. 43, No. 4, Article . Publication date: July 2024.
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input

energy

iteration
(linear scale)

Fig. 19. 𝑟𝑚𝑎𝑥 controls the numerical behavior of our energy by clamping
the medial axis distance, critical at early flow stages. This parameter can be
set to any value larger than 10𝑟 without much impact on the output, with
values between 2𝑟 and 10𝑟 producing curves with less pronounced wriggles.

with running flow (4 fps)

deforming curves computed on frame 0

Fig. 20. Our algorithm is fast enough to run the flow for one step per frame
while allowing real-time deformation of the underlying mesh. Even with a
single step per frame, the spacing remains constant as opposed to merely
deforming the curve.

Fig. 21. By adding a field-alignment energy, we can encourage the curve to
align itself to a specified tangent vector field.

For its use in artistic applications, a designer must be able to

modify the generated curves in an easily controlled manner. Our

framework allows for several modifications, such as aligning the

curve to a given vector field (see Figure 21) or eliminating pro-

nounced wriggles (see Figures 22) by adding simple sparse energies

(see Appendix A for details).

Our algorithm also provides a powerful yet intuitive way to con-

trol the shape of the curve by specifying a spatially varying density

w/o bending energy w/ bending energy

Fig. 22. By adding a biharmonic bending energy, we can encourage the
curve to be straighter.

   mapped to
Gaussian curvature

      mapped to
texture intensity

Fig. 23. An artist may choose to use a spatially-varying 𝛼 to generate curves
of varying density, by mapping it to a property like curvature for procedural
generation (left) or to any texture for more manual control (right).

Fig. 24. By progressively decreasing 𝑟 combined with the bending term, we
can produce a surface-filling curve with a small number of sharp corners.

through the 𝛼 parameter. As shown in Figure 23, an artist may pro-

cedurally generate aesthetic patterns by mapping 𝛼 to geometric

quantities like the Gaussian curvature of the underlying surface

or, for more manual control, by simply painting the desired den-

sity on the surface through a texture. Also, as shown in Figure 24,

Fig. 25. Surface-filling curves
could be used for fashion design,
such as an interactive body sensor
network or sportswear that cools
down body temperature.

we can obtain a curve with a min-

imum number of sharp corners by

progressively decreasing 𝑟 com-

bined with the bending energy.

Finally, as shown in Figure 26,

our method can obtain a unicur-

sally connected curve, thanks to

its topology-preserving feature

(see Figure 14). This can be favor-

able for deploying a robotic tool-

path (Figure 3), interactive sensor

network (Figure 25), or heating/-

cooling system (Figure 25 and Fig-

ure 27) on intricate surfaces.

ACM Trans. Graph., Vol. 43, No. 4, Article . Publication date: July 2024.
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input final

Fig. 26. Given two user-specified endpoints as an input curve, our method
can compute a unicursally connected surface-filling path.

Fig. 27. One potential application of our method is a cooling or heating
system deployed on complex surfaces, such as an artificial satellite, a space-
ship, or a spacesuit.

5 DISCUSSION AND CONCLUSIONS
We have proposed a geometric flow that evolves a given curve on

an input surface into a surface-filling curve with a user-specified

thickness 𝑟 . We have achieved this by defining a medial axis energy,
which we have discretized through several approximations into an

easily assemblable sparse quadratic energy whose descent direction

we follow via a Newton scheme.

Our proposed algorithm achieves results qualitatively similar to

the most recent work Yu et al. [2021] at a massive speed-up. How-

ever, it should be noted that surface-filling curves are only one

example of the more general repulsive energy defined by Yu et al.

[2021], for most of which said work remains state of the art. Specifi-

cally, a promising avenue for future work involves generalizing our

approach to space-filling curves contained on volumetric domains,

or even codimension-one space-filling surfaces.
Additionally, while ourmethod showed

excellent robustness on a diverse set of

input surfaces, we observed failure in

very few challenging situations where

the underlying geometry has noisy nor-

mal directions (see inset). This is because

our approach depends significantly on

the normal direction, and we currently lack an alternative method

to bypass this issue.

Also, a fundamental theoretical inquiry persists regarding the

empirical relationship in Figure 17 between curve thickness 𝑟 and

the energy weight 𝛼 .

Finally, we hope that by releasing our fast, robust, and user-

controllable algorithm to the geometry processing community and

beyond, we can enable a novel array of previously impracticable

applications of surface-filling curves for both interactive artistic

design and industrial applications at scale.
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A ENERGY MODIFICATIONS

A.1 Field-alignment energy
A user may wish to align the curve to a vector field 𝑋 on the input

surface by adding a simple energy

𝛽𝐹

𝑛−1∑︁
𝑖=1

1

𝑙𝑖
∥(𝑅𝑖𝛾𝑖 −𝑄𝑖𝛾𝑖+1) × (𝑅𝑖𝑋𝑖 +𝑄𝑖𝑋𝑖+1)∥22 , (11)

where 𝑋𝑖,𝑖+1 is the vertex-blended vector field on 𝛾𝑖,𝑖+1 and 𝛽𝐹 is

the weight which we set to 0.5 to 1 in our experiments. Intuitively,

it encourages the segment 𝛾𝑖𝛾𝑖+1 to be parallel to 𝑋𝑖 and 𝑋𝑖+1 in the

rigidly transformed plane.

A.2 Biharmonic bending energy
A user may also wish to encourage straighter segments by adding

a biharmonic bending energy. Let 𝜃𝑖 be the angle of ∠𝛾𝑖−1𝛾𝑖𝛾𝑖+1
projected onto the tangent space of 𝛾𝑖 , and 𝑃𝑖 be the rigid transfor-

mation matrix that maps 𝛾𝑖−1 to the point (𝑙𝑖−1 cos𝜃𝑖 , 𝑙𝑖−1 sin𝜃𝑖 , 0)
while aligning the normal vector 𝑁𝑖−1 with the 𝑧-axis. Intuitively,

𝑃𝑖 maps 𝛾𝑖−1 onto the same plane as we evaluate the geodesic curve

length of 𝛾𝑖𝛾𝑖+1. We formulate our biharmonic bending energy as

𝛽𝐵

𝑛−1∑︁
𝑖=1

𝑙𝑖−1 + 𝑙𝑖
2

𝑃𝑖𝛾𝑖−1 − 𝑅𝑖𝛾𝑖

𝑙𝑖−1
− 𝑅𝑖𝛾𝑖 −𝑄𝑖𝛾𝑖+1

𝑙𝑖

2
2

, (12)

where 𝛽𝐵 is the energy weight which we set to 10 to 1000 in our

experiments. We note that both the field-alignment and biharmonic

bending energies are sparse and quadratic, which does not have a

large effect on the runtime.

A.3 Power of the energy

radius radius radius radius radius

radius radiusradius radius radius

Fig. 28. We can obtain curves with varying global shapes by changing the
power orders 𝑝 and 𝑞 of the two energy terms (see Eq. (13)).

A user can change the global shape of the curve by changing the

square order of the energies into more general 𝑝 and 𝑞 powers,∑︁
𝑖

1

𝑙𝑖
∥𝑅𝑖𝛾𝑖 −𝑄𝑖𝛾𝑖+1∥𝑝

2
+

𝑛∑︁
𝑖=1

(𝛾𝑖 −𝑚′+
𝑖

𝑞
2
+
𝛾𝑖 −𝑚′−

𝑖

𝑞
2

)
, (13)

in which case the Hessian and gradient required for the descent

direction can be computed via automatic differentiation. As shown

in Figure 28, we observed that smaller 𝑝 and larger 𝑞 encourage

round corners and sharpen the radius histogram.

B DISCUSSION ON THE GRADIENT
energy vs. wall clock time

Eq.14 + gradient descent

fixed medial axis + gradient descent

fixed medial axis + preconditioning

Eq.14 + Newton

Fig. 29. Using our approximated Hessian as a preconditioner leads to robust
and faster convergence, compared to treating the medial axis position as a
function as in Eq. 14 or conducting the mere gradient descent as in Eq. 15.

In our gradient computation, we apply two modifications to the

mere gradient descent of Eq. 2; we (1) fix the unrolled medial axis

𝑚′±
𝑖

for each step and (2) use the inverse of the (approximated)

Hessian H𝑘
as a preconditioner.

If we do not fix𝑚′±
𝑖
, Eq. 7 can be rewritten as

𝐸𝑀 (𝜸 ) ≈
𝑛∑︁
𝑖=1

𝑙𝑖−1 + 𝑙𝑖
2

(𝑟+𝑖 (𝛾𝑖 )22 + 𝑟−𝑖 (𝛾𝑖 )
2
2

)
, (14)

where 𝑟±
𝑖
(𝛾𝑖 ) =

∥𝛾 𝑗−𝛾𝑖 ∥2
2

(𝛾 𝑗−𝛾𝑖 ) · (±𝐵𝑖 )
is the radius of the Euclidean medial

sphere grown from 𝛾𝑖 that touches 𝛾 𝑗 . However, we observed that

the gradient directions become so noisy that even the smallest step

would cause self-intersection, which completely stops the flow due

to our intersection avoidance (Figure 29).

Under fixing𝑚′±
𝑖
, one can also conduct the mere gradient descent

d𝑘 = −g𝑘 , (15)

equipped with an Armijo line search. While this gives qualitatively

similar results, our preconditioned gradient evolves faster, especially

in regions with thin features (see Figure 29).

Additionally, our approximated Hessian is banded near the diago-

nals, especially when the curve is singly connected and has an open

end. In this case, a user can take advantage of a Cholesky solver

tailored for symmetric banded matrices (e.g., the dpbtrf function
in LAPACK [Anderson et al. 1999]). In practice, we observed an
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approximately 30% speed up in the linear solve compared to using

a normal sparse Cholesky solver.

C COMPARISON WITH [Yu et al. 2021]
The algorithm of Yu et al. [2021] achieved a significant speed-up

thanks to their multigrid method. However, they neither explained

nor implemented how to apply it to the surface constraint. To ap-

proximate the effect of the multigrid method in Figure 5, we first

measured the runtime with and without the multigrid method on an

example that is supported, and then multiplied the speed-up factor

by the runtime with the surface constraint.
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