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Figure 1: Reconstructing a mesh from the discrete signed distance field (SDF) of a koala (source, rightmost). By using global
information from all sample points at once, our method recovers the shape even in low resolutions where methods like
Marching Cubes [Lorensen and Cline 1987] and Neural Dual Contouring (NDCx) [Chen et al. 2022a] produce very coarse shapes
(left trio), and it recovers surface detail at higher resolutions that Marching Cubes and NDCx miss (middle trio). Our method is
purely geometric, and does not require any training or storing of weights (unlike NDCx).

ABSTRACT
Signed distance fields (SDFs) are a widely used implicit surface

representation, with broad applications in computer graphics, com-

puter vision, and applied mathematics. To reconstruct an explicit

triangle mesh surface corresponding to an SDF, traditional iso-

surfacing methods, such as Marching Cubes and and its variants,

are typically used. However, these methods overlook fundamental

properties of SDFs, resulting in reconstructions that exhibit severe

oversmoothing and feature loss. To address this shortcoming, we

propose a novel method based on a key insight: each SDF sample

corresponds to a spherical region that must lie fully inside or out-

side the surface, depending on its sign, and that must be tangent

to the surface at some point. Leveraging this understanding, we

formulate an energy that gauges the degree of violation of tangency

constraints by a proposed surface. We then employ a gradient flow

that minimizes our energy, starting from an initial triangle mesh

that encapsulates the surface. This algorithm yields superior recon-

structions to previous methods, even with sparsely sampled SDFs.

Our approach provides a more nuanced understanding of SDFs and

offers significant improvements in surface reconstruction.

CCS CONCEPTS
• Computing methodologies → Shape modeling; Mesh mod-
els; Mesh geometry models.
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1 INTRODUCTION
Signed distance fields (SDFs) are a classical implicit surface rep-

resentation that finds diverse applications in computer graphics,

computer vision, and applied mathematics, among other domains

[Frisken et al. 2000; Jones et al. 2006; Sethian 1999]. A continuous

SDF is a scalar function 𝜙 (x) that, given a query point x in R𝑛 ,
returns the Euclidean distance to the closest point on the surface it

represents, augmented with a sign indicating whether the point is

on the interior or exterior. A discrete SDF samples this function at

a finite set of points in space, such as a grid, octree, or point cloud.

The task we consider is the reconstruction of an explicit triangle

mesh corresponding to the zero isosurface of such a discrete SDF.

Perhaps the most familiar such isosurfacing approach is March-

ing Cubes [Lorensen and Cline 1987] and its variants. They use

sign changes between adjacent SDF samples (e.g., along grid edges)

to approximately locate the zero isosurface and apply per-cell tem-

plates and linear interpolation of the function values to fill in local
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best fit in each voxel solution satisfies all spheres

Figure 2: Reconstructing an SDF per-voxel, by finding a best
fit line segment in each voxel containing both positive (red)
and negative (blue) values, discards much of the available
global information. Our main insight is that a solution ad-
hering to the constraints of all spheres yields better results.
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Figure 3: Using global information (not just per-voxel data),
we reconstruct sharp features even at low resolutions.

patches of the surface triangulation. While effective and appro-

priate for general implicit surface data, these schemes ignore the

unique and fundamental properties of SDFs to their detriment. In-

deed, mesh reconstructions of SDF data invariably exhibit severe

oversmoothing and feature loss (see Fig. 1). Approaches like dual

contouring [Ju et al. 2002; Kobbelt et al. 2001] can better recover

sharp features by additionally relying on surface normals. However,

discrete SDFs lack the necessary gradient information and finite

difference estimates give disappointing results. Is there any hope

of achieving better reconstructions from the SDF data alone?

Neural Marching Cubes [Chen and Zhang 2021] and Neural

Dual Contouring [Chen et al. 2022a] have recently answered this

question in the affirmative: they demonstrate better per-cell recon-

structions by training on a large dataset of SDFs and using wider

(7
3
) stencils of SDF grid points. The quality of these results suggests

that there exists some additional information implicit in the SDF

data. Our objective is therefore to explicitly identify and directly

exploit this overlooked geometric information, without recourse to

learning approaches, and thereby achieve superior reconstructions.

The key insight underpinning our method is that (see Fig. 2) each
SDF sample 𝜙 (x) corresponds to a spherical region, centered at x and

with radius equal to | 𝜙 (x) |. By definition, the true surface repre-

sented by the discrete SDF must be tangent to every sphere at least

once while strictly containing every sphere with negative value

and excluding every positive value one. Through these constraints,

i=0source i=2 i=10 i=45 i=79

60² SDF grid

Figure 4: Our 2D flow at different iteration counts on a cat,
sampled from the source mesh on the left.

source i=2 i=15 i=50 i=150 finali=0

70³ SDF grid

Figure 5: Our 3D flow at different iteration counts on a tower,
sampled from the source mesh (left). The final version (right)
has been Loop subdivided.

the SDF samples contain significantly more information about the

surface than samples from a generic implicit representation would.

To fully exploit this information, we first formulate an energy

that measures the degree to which a proposed surface violates the

tangency constraints of the input SDF samples. We propose an

algorithm that starts from a triangle mesh enclosing the surface,

then "shrinkwraps" the underlying surface via a gradient flow that

minimizes our energy, interleaved with remeshing to ensure mesh

quality. The fidelity of the resulting reconstructions surpasses that

of prior methods, especially for sparsely sampled SDFs. Addition-

ally, since our method has no intrinsic dependence on a grid, it is

amenable to unstructured point cloud SDFs, and even incorporating

new samples, where available, to improve the reconstruction.

2 RELATEDWORK
2.1 Signed Distance Fields
SDFs have been used in countless applications spanning the compu-

tational sciences, so we highlight only a representative sample. In

computer graphics they have been applied to liquid surface tracking

[Foster and Fedkiw 2001], geometric modeling [Museth et al. 2002],

collision detection [Fuhrmann et al. 2003], and ray (sphere) tracing

[Hart 1996]. In traditional computer vision, uses have included

image / volume segmentation [Chan and Vese 1999] and surface

reconstruction from multiview data [Faugeras and Keriven 1998]

or point clouds [Zhao et al. 2001]. In computational physics, SDFs

have been applied (via the level set method) to model combustion,

crystal growth, and fluid dynamics [Osher and Fedkiw 2003; Sethian

1999]. SDFs have also been applied to manufacturing [Brunton and

Rmaileh 2021] and robot path planning [Liu et al. 2022].

SDFs have recently seen renewed interest in the context of geo-

metric deep learning. In particular, the DeepSDF approach [Park

et al. 2019] replaces the discrete SDF with a learned continuous SDF

of a shape or a space of shapes. This concept represents a subset

of general neural implicit surfaces and of neural fields even more

broadly [Xie et al. 2022]. Differentiable rendering with SDFs has

been investigated to solve inverse problems [Bangaru et al. 2022;
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violation:
surface inside

violation:
surface not tangent

determining closest points flow fixes violations

Figure 6: A green surface the sphere constraints from two SDF samples (left). The method identifies the closest point on the
surface and the closest point on the sphere for each sample point p𝑖 that makes the sphere correctly lie inside or outside the
surface, as prescribed by 𝑠𝑖 (middle). Our flow fixes all violations until the constraints 𝜙 (p𝑖 ,M) = 𝑠𝑖 are fulfilled (right).
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Figure 7: Three surfaces violating the SDF constraints in
different ways, and a surface that satisfies them (left to right).

Vicini et al. 2022]. Since neural implicits often fail to exactly retain

the signed distance property, Sharp and Jacobson [2022] propose

techniques for robust geometric queries in this setting.

Despite widespread adoption of SDFs, prior techniques often

view SDFs as a convenient and canonical but general implicit surface

function. They may exploit the distance property in some respects,

but none that we are aware of consider the additional subgrid infor-

mation implied by our tangent-spheres interpretation (mentioned

by Batty [2011]; Kobbelt et al. [2001]). Instead, the location of the

zero isosurface is assumed to be that of the linear (or occasionally

polynomial) interpolant of the SDF samples. However, away from

the data points, such interpolated fields are not true SDFs.

2.2 Isosurfacing Approaches
The task of generating an explicit mesh corresponding to a given

implicit surface is variously referred to as isosurfacing, polygo-

nization, surface reconstruction, or simply meshing. There is an

extensive body of literature on the topic, so we refer the reader to

the survey by De Araújo et al. [2015]. There exist three broad cate-

gories of isosurfacing schemes: first, spatial subdivision schemes

like Marching Cubes; second, advancing front methods, which start

at a point and incrementally attach new triangles as they propagate

across the surface until it is covered [Hilton et al. 1996; Sharf et al.

2006]; and third, shrinkwrap or inflation methods, which start with

an initial closed surface and gradually grow it inwards or outwards

to conform to the desired isosurface [Hanocka et al. 2020; Stander

and Hart 1997; Van Overveld and Wyvill 2004]. Our method falls

into the last category, which is relatively under-explored compared

to the others. The work of Bukenberger and Lensch [2021] employs

evolving meshes with periodic remeshing that conform to target

SDFs, like our approach. They require the SDF to be resampled at

every iteration of their method, while our method only requires

the SDF to be evaluated on a finite set of evaluation points at the

beginning (although our method can support resampling as well,

see Fig. 14), and they do not use all SDF spheres’ global information.

Isosurfacing methods are often applied to SDFs, but seldom ex-

ploit the signed distance property. Indirectly, Neural Marching

Cubes [Chen and Zhang 2021] and Neural Dual Contouring [Chen

et al. 2022a] represent two key exceptions. Their SDF dependence

is not explicit in their algorithms, but implicitly encoded into their

neural networks when trained on exact SDFs to achieve improved

results compared to prior non-neural schemes. Our approach avoids

any reliance on deep learning, instead making explicit use of fun-

damental geometric properties of SDFs.

Recently, Deep Marching Cubes (DMC) [Liao et al. 2018],

MeshSDF [Remelli et al. 2020], and FlexiCubes [Shen et al. 2023]

were developed to offer differentiable isosurfacing procedures. Their
goal is often to incorporate isosurfacing into end-to-end deep learn-

ing pipelines for applications like shape completion, shape opti-

mization, or single-view reconstruction. By contrast, we focus on

achieving the highest quality of reconstruction of discrete SDFs.

Our SDF energy has connections to the losses used in such work.

2.3 Mesh Optimization
Our algorithm uses gradient flow to optimize an energy with re-

spect to the vertex positions of a triangle mesh, with the aim of

finding a valid, tangency-aware surface reconstruction. Variational

techniques in this style are ubiquitous in geometry processing appli-

cations, such as mean curvature flow and surface fairing [Desbrun

et al. 1999; Kazhdan et al. 2012], mesh quality improvement [Alliez

et al. 2005], Willmore flow [Crane et al. 2013], constructing coarse

cages [Sacht et al. 2015], developability [Stein et al. 2018], and

morphological operations [Sellán et al. 2022]. To maintain and im-

prove mesh quality during our flow, we employ the local remeshing

scheme of Botsch and Kobbelt [2004].

Our flow displaces the vertices of a mesh such that the mesh

is tangent to a set of spheres centered at the SDF sample points.

In a way, this can be seen as solving a reverse formulation of the

medial axis computation problem. In it, one searches for maximally

contained spheres tangent to a given surface, often through a com-

bination of greedy decompositions and progressive simplifications

[Li et al. 2016; Ma et al. 2012; Rebain et al. 2019].
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Figure 8: While our algorithm shines at low and medium
resolutions, it also recovers high-frequency detail Marching
Cubes misses at higher resolutions.

3 METHOD
Let us assume we are given access to the values 𝑠1, . . . , 𝑠𝑛 ∈ R of

the Signed Distance Function 𝜙 for an unknown surface Ω sampled

at 𝑛 points in space p1, . . . , p𝑛 ∈ R3, 𝑠𝑖 = 𝜙 (p𝑖 ,Ω). Our task will be

to reconstruct a valid surface Ω; i.e., one that is consistent with the

SDF observations. This can be expressed as the constraints

𝜙 (p𝑖 ,Ω) = 𝑠𝑖 , ∀𝑖 ∈ {1, . . . , 𝑛} . (1)

Intuitively, one may visualize this condition by drawing a sphere

𝑆𝑖 of radius |𝑠𝑖 | around each p𝑖 and requiring that the surface Ω be

tangent to all of them with the correct orientation (see Fig. 7).

We beginwith a simple idea: turn (1) into an energyminimization

problem over the space of surfaces. To this end, we define the SDF
energy of a surface to be the squared difference between 𝑠𝑖 and the

SDF value of the surface at p𝑖 :

E𝜙 (Ω) =
1

2

𝑛∑︁
𝑖=1

(𝜙 (p𝑖 ,Ω) − 𝑠𝑖 )2 . (2)

Exploring the entire space of surfaces Ω to find one that minimizes

the above energy is intractable. Instead, we propose to start from

an initial surface Ω0
and follow the gradient flow of the SDF energy

𝜕Ω

𝜕𝑡
= −∇ E𝜙 (Ω) . (3)

We refer to this as our sphere reaching flow, since it will encour-

age Ω𝑡
to touch every 𝑆𝑖 at least once, while strictly containing all

negative 𝑆𝑖 and strictly excluding all positive 𝑆𝑖 (see Fig. 6).

4 DISCRETIZATION
We discretize the time dimension of our flow using an implicit

scheme to obtain the sequence Ω0,Ω1, . . . ,Ω𝑇
of surfaces such that

Ω𝑡 = Ω𝑡−1 − 𝜏∇ E𝜙
(
Ω𝑡 )

(4)

for some small time step 𝜏 . Equivalently, given a surface Ω𝑡−1
, we

will aim to find a new surface Ω𝑡
that minimizes the energy

Ω𝑡 = argmin

Ω

1

2𝜏



Ω − Ω𝑡−1

2
2
+ E𝜙 (Ω) . (5)

In order to sequentially solve this minimization problem for

𝑡 = 0, . . . ,𝑇 , we will need to discretize the space of surfaces Ω. We

will do so by representing each surface Ω𝑡
as a triangle mesh Ω𝑡

with vertices V𝑡
and faces F𝑡 . (5) can then be written as

Ω𝑡 = argmin

Ω

(
1

2𝜏



V − V𝑡−1

2
M + E𝜙 (Ω)

)
, (6)

where ∥ · ∥M is the mass-matrix-integrated norm ∥ · ∥2M = ·⊤M·.

h    = 0.05min 0.02 0.01 0.005 0.001 source marching
cubes

100  3 100  3 100  3 100  3 100  3 100  3

Figure 9: A critical parameter in our method is the maximum
resolution, encoded in the edge-length ℎmin, which balances
the under- or over-constrained nature of our optimization.

Unfortunately, E𝜙 (Ω) is not convex or even continuously differ-

entiable, which makes it difficult to minimize. To circumvent this,

we first define c𝑖 (Ω) as the specific closest point on the surface Ω
to p𝑖 ,1 which we can write as a𝑖 (Ω)V for some sparse vector of

barycentric coordinates a𝑖 (Ω). Then E𝜙 (Ω) becomes

E𝜙 (Ω) = 1

2

𝑛∑︁
𝑖=1

(𝜙 (p𝑖 , c𝑖 (Ω)) − 𝑠𝑖 )2 (7)

where we have slightly abused notation to let 𝜙 (p𝑖 , c𝑖 (Ω)) return
the distance ∥p𝑖 − c𝑖 (Ω)∥ with the sign of 𝜙 (p𝑖 ,Ω). This modified

energy penalizes distances between each closest point and the

corresponding sphere’s surface. Refer to Fig. 6 for the geometric

picture.

We next define t𝑖 (Ω) as the projection of p𝑖 , along the line

through p𝑖 (Ω) and c𝑖 (Ω), onto the signed distance sphere 𝑆𝑖 ,

t𝑖 (Ω) = p𝑖 + 𝜎𝑖 |𝑠𝑖 |
c𝑖 (Ω) − p𝑖
∥c𝑖 (Ω) − p𝑖 ∥

, (8)

where 𝜎𝑖 depends on the orientation of the surface Ω at c𝑖 (Ω):
• If p𝑖 is inside/outside Ω and the sign of 𝑠𝑖 is negative/posi-

tive, then 𝜎𝑖 = 1.

• If p𝑖 is inside/outside Ω and the sign of 𝑠𝑖 is positive/nega-

tive, then 𝜎𝑖 = −1.
That way, if the surface were translated such that c𝑖 (Ω) coincided
with t𝑖 , the SDF would be satisfied at p𝑖 . We use the mesh element’s

normal vector at c𝑖 (Ω) to distinguish between inside and outside.
2

As t𝑖 (Ω) and c𝑖 (Ω) will be equal for a valid solution, we approx-

imate (𝜙 (p𝑖 , c𝑖 (Ω)) − 𝑠𝑖 ) by ∥c𝑖 (Ω) − t𝑖 (Ω))∥. Thus, (7) becomes

1

2

𝑛∑︁
𝑖=1

∥c𝑖 (Ω) − t𝑖 (Ω))∥2 = 1

2

𝑛∑︁
𝑖=1

∥a𝑖 (Ω)V − t𝑖 (Ω)∥2 , (9)

which we further simplify by fixing t𝑖 (Ω) to t𝑖
(
Ωt−1)

.

Concatenating a𝑖 and t𝑖 into matrices A and S, this becomes

1

2

∥AV − S∥2𝐹 , (10)

which we can now incorporate into (6):

V𝑡 = argmin

V

1

2𝜏



V − V𝑡−1

2
M + 1

2

∥AV − S∥2𝐹 . (11)

1
We use an AABB tree to speed up computation of the closest point, and we compute

the query for every 𝑝𝑖 at once.
2
In practice, we do not distinguish between inside and outside spheres if c𝑖 (Ω) is
on the boundary of a mesh element, since normal information is not reliable there —

t𝑖 (Ω) is simply the closest point on the sphere.
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Figure 10: With no training and no network weight storage, our method consistently outperforms MC and outperforms or
matches Neural DC across resolutions.
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Figure 11: Our flow can be used on sparse (recovering more
detail than MC) and very dense (matching MC) SDF grids.

This quadratic optimization problem on the vertex positions V can

be solved via the linear system

QV𝑡 = B (12)

where

Q = M + 𝜏A⊤A , B = MV𝑡−1 + 𝜏A⊤S . (13)

The matrices A, M, and Q are sparse, thus the linear system can be

efficiently solved using, e.g., Cholesky decomposition. A simplified

step of this flow can be seen on the right of Fig. 6.

Choosing step size 𝜏 . The formulation in (12) produces a flow that,

for a small enough 𝜏 , will reduce the SDF energy each iteration.

However, choosing 𝜏 too small can be inefficient, while 𝜏 too large

will violate the linearization assumptions made in our discretization

and cause flow instabilities. We use a heuristic inspired by Armijo’s

condition [Nocedal and Wright 2006] to choose the optimal step

size, 𝜏 = 𝜌 clamp(𝜏∗, 𝜏min, 𝜏max), where 𝜌 = 1

𝑛 ,

𝜏∗ = −𝜌 (A − S) · (AP) + 0.01∥P∥2

𝜌 ∥AP∥2
, P = −𝜌A⊤ (A − S) , (14)

and, by default, 𝜏min = 10
−6
, 𝜏max = 50.

4.1 Mesh resolution and quality
As mesh vertices V move during our flow, mesh quality rapidly

degrades, producing degeneracies, flipped and thin triangles, and

self-intersections. We solve this common problem of geometric

flows by remeshingwith the algorithm of Botsch and Kobbelt [2004],

which uses a sequence of local improvement operations. After each

flow iteration, we apply a single remeshing iteration using a given

target edge-length ℎ (more iterations may be used if needed). We

implement this operation in an output-sensitive manner, analogous

to the approach of Sellán et al. [2022], by remeshing exclusively

the regions of the surface that are the closest point on Ω to any of

the p𝑖 and violate the SDF value 𝑠𝑖 by more than a tolerance 𝜀 (by

default, 5 · 10−3 for 2D and 10
−2

for 3D).

source ours

MC with input data trilinearly upsampled to…

20³ SDF grid 30³ 

MC

40³ 50³ 80³ 100³ 

Figure 12: Our algorithm’s full exploitation of all the SDF in-
put data means its improved performance against Marching
Cubes is preserved even if one artificially upsamples the SDF
input before using MC.

Both our flow and our remeshing operations preserve the intrin-

sic shape’s topology. This restriction helps us avoid some of the

most catastrophic failures of existing methods like Marching Cubes,

which can produce wrongly disconnected mesh components at low

resolutions (see Figs. 1, 10). At the same time, it means that our

starting surface mesh Ω0
needs to agree with the topology of the

surface to be reconstructed.

Careful consideration must also be given to the mesh resolution

during our flow, as encoded in the remesher’s target edge-length,

ℎ. As shown in Fig. 3, our flow is capable of recovering much more

faithful surface detail than existing grid-based methods. Thus, we

naturally wish to provide it with enough degrees of freedom (suffi-

ciently low target edge-lengthℎ) to accurately represent the surface.

At the same time, too many mesh vertices will make our flow itera-

tions costly and the sphere reaching problem underconstrained.

h=0.2
h÷2

h÷2

h÷2

h÷2

Ideally, then, wewish our flow to produce

the lowest possible resolution mesh that can

explain all SDF samples. We will achieve

this by starting from a very high value of

ℎ and running our flow until convergence,

as identified by the energy’s failure to de-

crease further than by a tolerance (10
−3𝜀)

in the past 10 iterations, to obtain a coarse

approximation of the surface (see inset). We

will then halve ℎ and run our flow again,

noting that our output-sensitive remesher

will only refine the regions of the shape that

are contributing to the energy (i.e., those that need the additional

resolution). We repeat this process until a minimumℎ𝑚𝑖𝑛 is reached,

by default set to be the average distance between SDF samples p𝑖 .
Once ℎmin is reached, we run our flow until the energy has not

decreased by more than 10
−3𝜀 in the past 100 iterations.
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our flow convergedmarching cubes
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Figure 13: Our flow is not limited to genus zero shapes, but
the topology of the initial surfacemust match the reconstruc-
tion’s. Marching Cubes may provide a good starting surface
in these non-genus-zero cases.

ourssource ours
resampled

ourssource ours
resampled25² SDF grid 20³ SDF grid

Figure 14: We can further improve the reconstruction quality
on coarse grids by adding just a few SDF samples after the
flow has converged, due to the gridless nature of our method.

Batching. In practice, our algorithm’s computational cost is dom-

inated by the assembly of A, which requires 𝑛 signed distance and

closest point queries between each sphere origin and the current re-

construction mesh. Even though we manage to resolve each query

in logarithmic time by assembling and using a bounding volume hi-

erarchy, computing all𝑛 queries can be costly. Thus, for large values

of 𝑛 (e.g., 𝑛 > 50
3
), we propose using randomly chosen batches of

spheres at each iteration. Empirically, we note that interior spheres

are more critical to our flow’s stability; therefore, we only batch

exterior spheres. By default, we make the batch size min(𝑛, 20000).

5 RESULTS & EXPERIMENTS
Implementation details. We implemented our algorithm in

Python using Gpytoolbox [Sellán and Stein 2023] for common

geometry processing subroutines including our flow’s remesher as

well as the Marching Cubes reconstruction [Lorensen and Cline

1987] used in our comparisons. Our comparisons to Neural Dual

Contouring [Chen et al. 2022a] use the authors’ publicly available

implementation, including following their preprocessing instruc-

tions. We report timings on a 20-Core M1 Ultra Mac Studio with

128GB RAM. We rendered our figures in Blender, using Blender-

Toolbox [Liu 2023].

Our method’s complexity is determined by three algorithmic

steps that must be executed at each flow iteration. First, the signed

distances from each p𝑖 to the current mesh are computed with a

complexity of O((𝑏+𝑚) log(𝑚)) (where𝑚 is the number of current

mesh vertices and 𝑏 is the batch size). Secondly, the linear system

in Eq. (12) adds an O(𝑚1+𝑓 ) term, where 𝑓 accounts for the sparse

system solve (we cannot take advantage of precomputation as the

mesh changes in every iteration). Finally, our remeshing step adds

an O(𝑚̃) term, where 𝑚̃ < 𝑚 is the size of the active region of the

current mesh. In the limit, this means each flow iteration will be

asymptotically dominated by max(𝑏 log(𝑚),𝑚1+𝑓 ); in practice, we

find this to be the case except for very low values of𝑚 and 𝑏, where

the constant factors in the remesher complexity dominate.

Our input shapes are scaled to fit the box [− 1

2
, 1
2
]𝑛 , and our SDF

grids are constructed in [−1, 1]𝑛 . We use default parameters, unless

otherwise specified in the supplemental material. Unless otherwise

marching
cubes

ours ourssamples
on grid

gridless
samples12³ SDF grid

source

Figure 15: SDF sampled from the same source on a grid and
with the same number of samples on a noisy point cloud
of the source. Alternate sampling strategies unavailable to
grid-based methods allow us to recover more information
with the same number of SDF samples.

specified, we initialize our examples with a unit icosahedral sphere,

but our flow can handle other initializations (Fig. 13).

5.1 Comparisons
The sole input to our algorithm is a set of query points p𝑖 and
corresponding SDF values 𝑠𝑖 . In the specific case where these sam-

ples are placed on a structured grid, this input matches that of the

timeless reconstruction algorithm Marching Cubes [Lorensen and

Cline 1987]. By allowing for the training on a vast dataset and the

storing of a large number of network weights, recent advances like

Neural Dual Contouring [Chen et al. 2022a] have been shown to

outperform most other reconstruction algorithms.

Qualitative comparisons. Throughout the paper, we qualitatively
show our algorithm’s improved performance against Marching

Cubes (MC). At low resolutions, MC often produces little more than

disconnected “blobs”, often missing entire regions of the shape (see

Figs. 1, 10). By contrast, our method shines at these resolutions,

where exploiting all the global information provided by the SDF

samples can recover features completely absent from the MC re-

construction (see Figs. 3 and 15), an advantage that is preserved

even if the data is upsampled artificially to denser grids (see Fig. 12).

Even at higher resolutions, our global SDF-aware reconstruction

captures significantly more detail (see Figs. 8, 9 and 11).

In Figs. 1, 10, and 21, we additionally compare our algorithm’s

effectiveness with Neural Dual Contouring [Chen et al. 2022a]. To

make the comparison as generous as possible, we used the high-

est performing version of the authors’ publicly available trained

models [Chen et al. 2022b], NDCx, which combines their network

with elements of their previous work’s learned model [Chen and

Zhang 2021]. Even though their data-driven approach manages to

outperform Marching Cubes in almost all our tests, we qualitatively

find that our purely geometric algorithm consistently outperforms

both at low and medium resolutions despite requiring no training.

Quantitative comparisons. Inspired by the evaluations in the

work by Chen et al. [2022a], we also compare our algorithm’s

performance quantitatively. In Fig. 21, we run our algorithm using

its default parameters as well as Marching Cubes and NDCx on

shapes from a diverse set of origins whose SDFs have been sampled

at different resolutions. In our supplemental material, we attach a

table comparing the Hausdorff distance to the ground truth mesh

as well as Chamfer distance and our own SDF energy E𝜙 , while
Table 1 shows the average values for each resolution. While plac-

ing fewer requirements on the input (any set of points p𝑖 versus a
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Grid size Hdf MC Hdf NDCx Hdf Ours Chr MC Chr NDCx Chr Ours E𝜙 MC E𝜙 NDCx E𝜙 Ours Time Ours

6
3

0.3351 0.2597 0.1236 0.1918 0.1135 0.0569 31.4645 10.2969 0.1091 1.1214

10
3

0.2518 0.1954 0.0846 0.1053 0.0662 0.0343 13.8933 6.2637 0.1152 1.2686

20
3

0.1486 0.1163 0.0631 0.0465 0.0311 0.0210 4.7667 2.8065 0.1377 4.7881

30
3

0.0756 0.0494 0.0396 0.0206 0.0127 0.0118 0.6125 0.1451 0.0280 6.0939

40
3

0.0581 0.0366 0.0417 0.0143 0.0089 0.0100 0.3933 0.0910 0.0135 6.6929

50
3

0.0501 0.0360 0.0253 0.0107 0.0077 0.0074 0.2451 0.1042 0.0050 9.4438

Table 1: Across a diverse set of examples and resolutions, our flow exhibits lower Hausdorff ("Hdf"), Chamfer ("Chr") and SDF
(E𝜙 ) errors than Marching Cubes, while surpassing or matching data-driven approaches like Neural Dual Contouring. Time
given in seconds. Data averaged over Table 2 (supplemental).

unsigned distance field reconstruction

103 203 403 803 100
3

source

Figure 16: By relaxing the constraints in our method, our
flow can be seamlessly applied to unsigned distance fields at
diverse resolutions.

structured grid), our algorithm consistently outperforms Marching

Cubes across the board, often by several integer factors. While

requiring no training, our algorithm surpasses NDCx at low resolu-

tions and remains competitive at medium and higher resolutions.

We note that MC requires between 20
3
and 30

3
SDF grid samples to

match the accuracy of our algorithm at the lowest of resolutions (6
3

grid). Thus, our algorithm reduces memory storage requirements

for equal surface accuracy by a factor of between 37 and 125.

5.2 Parameters
A number of parameters affect our method’s ability to extract all

information from its SDF input. Among these, the most crucial is

the minimum mesh edge-length ℎmin. Choosing ℎmin too high can

cause the method to miss information available in the SDF samples.

A very small ℎmin can negatively affect performance, and also un-

derconstrain the problem, leading to (completely valid) solutions

that have high-frequency noise. Our remeshing procedure contains

a regularization step that combats this noise, but does not com-

pletely obviate it. Empirically, we find that setting ℎmin to be the

average closest-distance between samples p𝑖 (i.e., the gridless ana-
logue of the grid edge-length) is a useful heuristic, whose reliability

we show across resolutions in Fig. 21, Table 1 and the supplemental.

5.3 SDF sampling
While many algorithms rely on SDF samples to be located on a

structured (regular or not) grid, our method is completely agnostic

to the position of the samples p𝑖 . We can take advantage of this in

multiple ways. For example, we can run our algorithm, unchanged,

on SDF data sampled on fully unstructured point clouds, exploiting

prior information (Fig. 15). In settingswhere the source SDF function

clamped SDF reconstruction

source [-1,1] [-.5,.5] [-.25,.25] [-.1,.1] [-.05,.05] [-.025,.025] marching
cubes

30  SDF grid3

Figure 17: Clamped or truncated SDFs discard information
our method needs to capture the shape’s detail, but our
method degrades gracefully and still outperforms March-
ing Cubes even for aggressive clamping parameters.

is available to be queried, we can add more samples (p𝑖 , 𝑠𝑖 ) after
our method has converged, and run it from the previous result

(Fig. 14) to incrementally improve the reconstruction. Our heuristic

for adding samples is to generate𝑚
trial

samples on Ω, randomly

displace them in the normal direction by a normal distribution

scaled by 0.05, and select the𝑚new samples farthest away from the

surface of any SDF sphere (but at most one per mesh element). By

default,𝑚new = 2

√
𝑛 in 2D,𝑚new = 2

3

√
𝑛 in 3D, and𝑚

trial
= 50𝑚new.

5.4 Beyond SDFs
Signed Distance Fields are a powerful representation that we have

shown can be exploited to obtain a surprisingly large amount of

information about a given object. Often, however, computing exact

SDFs can be costly or impracticable, forcing one to relax some of

the assumptions in the traditional SDF definition.

Consider the case of unsigned distance fields, which lack the

inside-outside information contained in the sign of traditional SDFs.

As shown in Fig. 16, our flow can very easily be employed to re-

construct meshes from these functions, merely by always making

𝜎𝑖 = 1 in (8). Intuitively, this means we move the surface towards

the closer of the sphere’s two possible tangent points, t𝑖 .
Another relaxation of SDFs are clamped, truncated, or narrow

band SDFs, that take a constant value at spatial positions “suffi-

ciently far” from the surface. This is a common representation in

highly performant modelling applications and, more recently, in

machine learning models when one wants to focus learning near

the object’s surface (see, e.g., [Park et al. 2019]). Generalizing our

algorithm to these representations is conceptually simple: for a

given clamp value 𝜎𝑐 , we allow the tangency requirement (but not

the intersection-free one) to be violated for those spheres with radii

larger than 𝜎𝑐 . In practice, this amounts to zeroing out the 𝑖-th row
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approximate SDF: 
swept volume

source

marching
cubes ours203

Figure 18: A swept volume SDF is accurate only outside the
object. Inside, it is only a bound on distance. By relaxing
its assumptions, we can use our method for swept volume
reconstruction.

of A if |𝜙 (p𝑖 ,Ω𝑡 ) | > |𝑠𝑖 | > 𝜎𝑐 . Our algorithm relies on faraway

spheres to provide additional information about the reconstruction;

therefore, using a clamped SDF necessarily results in a progressive

loss of detail (see Fig. 17).

Yet another common SDF-based representation is formed by

instead providing bounds on the true shape’s signed distance (these

are referred to as conservative SDFs by Takikawa et al. [2022]).

Such SDFs appear naturally as the output of Boolean operations on

signed distance functions. A recently studied example of this are

swept volumes, which can be represented by taking the minimum of

the SDF of an object along a trajectory; however, this representation

is only an exact SDF outside the volume, while only a bound inside.

As we show in Fig. 18, all that is needed to apply our flow to swept

volume reconstruction is to relax the tangency constraint of the

negative-sign spheres only. In practice, this amounts to zeroing the

𝑖-th row of 𝐴 if |𝜙 (p𝑖 ,Ω𝑡 ) | > |𝑠𝑖 | and 𝑠𝑖 < 0. We believe this to be a

promising application of our work, as swept volume approximate

SDFs are often extremely costly to query [Sellán et al. 2021].

6 DISCUSSION AND CONCLUSIONS
We have leveraged our new tangent-spheres interpretation to de-

velop an effective isosurfacing method, called Reach for the Spheres,
that exploits the full representational power of SDFs. Using only geo-

metric information present in a standard discrete SDF, we are able

to recover noticeably more detail than previous general-purpose iso-

surfacing schemes. Our method especially shines on low-resolution

SDF grids, where it is able to exploit every last bit of information

that othermethodsmightmiss, and it canmatch traditional methods

for high resolutions. By releasing our method to the Graphics com-

munity, we hope to renew interest in lightweight, low-resolution

SDF representations and enable novel, scalable applications.

Our method is not yet robust to self-intersections, nor does it

support topology changes, as needed to straightforwardly handle

difficult multi-component or nonzero genus shapes. Thus, as a limi-

tation, our method can exhibit self-intersection and pinching effects

due to singularities in the discrete flow (Fig. 19). Our algorithm’s

current inability to handle these singularities also limits its efficacy

on noisy SDF data (see Fig. 20). We are optimistic that existing

mesh-based fluid simulation surface tracking techniques [Wojtan

et al. 2011] can help overcome these restrictions.

Furthermore, a surface that perfectly satisfies a given discrete

SDF can often still have significant flexibility at the finer scales; an

exciting direction is to incorporate specific priors for particular ap-

plications, via additional regularization or data-driven approaches.

self-intersection

pinching

50  SDF grid3

50  3

Figure 19: Like many geometric flows, our algorithm can oc-
casionally produce singularities, corresponding to attempts
to dynamically change topology.

source noise=0.001 noise=0.0025 noise=0.005noise=0

30³ SDF 
grid

Figure 20: Adding Gaussian noise to the SDF input values,
with increasing standard deviation. For small values, our
flow degenerates gracefully. At a standard deviation of 0.005
(i.e., 0.5% of the shape’s bounding box length), our flow hits
a singularity before the stopping criterion is reached.

There is also ample room to improve the performance of ourmethod,

by using more elaborate methods for closest point computations,

solving linear equations, and remeshing.

Beyond surface reconstruction, a vast array of other graphics

techniques rely on discrete SDFs across simulation, geometry pro-

cessing, and rendering. We look forward to exploring whether in-

corporating the tangent-spheres perspective can yield comparable

improvements for these applications as well.
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Figure 21: Our algorithm strikingly outperforms Marching Cubes and Neural Dual Contouring (NDCx) at low and medium
resolutions.
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SUPPLEMENTAL MATERIAL
Parameters
In this section we list ℎmin and non-default parameters used in this

article.

Fig. 1. ℎmin = 0.02 for grid size 10. ℎmin = 0.01 for grid size 50.

𝜀 = 10
−4
. 3 remesh iterations.

Fig. 3. ℎmin = 0.03. 𝑡max = 10 in 3D.

Fig. 4. ℎmin = 0.01.

Fig. 5. ℎmin = 0.02. Batching turned off.

Fig. 8. ℎmin = 0.008.

Fig. 10. Left to right: ℎmin = 0.05, 0.02 and 0.008.

Fig. 11. For grid size 𝑛3, ℎmin = 2

𝑛 , and 𝜀 =
10

−2
𝑛 .

Fig. 14. ℎmin = 0.035 in 2D; ℎmin = 0.04 in 3D.

Fig. 15. ℎmin = 0.06. 𝜀 = 10
−3

Fig. 20. ℎmin = 0.015.

Detailed Quantitive Evaluation Data
Table 2 contains the detailed results of our quantitative evalua-

tions for the SDF reconstruction problem on a variety of shapes,

comparing our method with Marching Cubes and NDCx.
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Shape 𝑛 Hdf MC Hdf NDCx Hdf Ours Chr MC Chr NDCx Chr Ours E𝜙 MC E𝜙 NDCx E𝜙 Ours Time Ours

mushroom 6 0.1952 0.1489 0.1417 0.1274 0.1103 0.0753 11.7905 1.1676 0.0519 0.5147

mushroom 10 0.1221 0.0819 0.1023 0.0715 0.0456 0.0420 3.9187 0.4795 0.0455 1.1983

mushroom 20 0.0611 0.0485 0.0606 0.0345 0.0197 0.0200 0.5752 0.1567 0.0519 6.0584

mushroom 30 0.0546 0.0233 0.0407 0.0215 0.0114 0.0116 0.3133 0.0758 0.0150 3.9053

mushroom 40 0.0532 0.0217 0.0238 0.0165 0.0077 0.0077 0.2285 0.0286 0.0092 4.1968

mushroom 50 0.0382 0.0186 0.0188 0.0120 0.0065 0.0062 0.1012 0.0128 0.0038 7.1066

nefertiti 6 0.2007 0.1296 0.0988 0.1384 0.0671 0.0462 11.9997 0.6109 0.0520 1.8593

nefertiti 10 0.1826 0.0760 0.0645 0.0976 0.0379 0.0188 5.1541 0.3250 0.0427 1.6463

nefertiti 20 0.0744 0.0419 0.0381 0.0304 0.0146 0.0142 0.9196 0.0742 0.0416 6.6072

nefertiti 30 0.0406 0.0382 0.0286 0.0144 0.0080 0.0086 0.2235 0.0414 0.0145 10.2500

nefertiti 40 0.0382 0.0287 0.0246 0.0119 0.0063 0.0069 0.1655 0.0190 0.0100 6.4140

nefertiti 50 0.0341 0.0316 0.0264 0.0076 0.0056 0.0059 0.0459 0.0128 0.0032 11.1034

bunny 6 0.2947 0.1669 0.1769 0.1997 0.0938 0.0626 15.2121 1.9051 0.0438 0.9502

bunny 10 0.4295 0.4051 0.0860 0.1199 0.0982 0.0332 16.6344 11.3773 0.0685 1.3017

bunny 20 0.1975 0.1348 0.0612 0.0453 0.0271 0.0182 3.6855 1.0939 0.0527 4.2061

bunny 30 0.0580 0.0383 0.0397 0.0158 0.0110 0.0097 0.2503 0.0349 0.0226 8.9931

bunny 40 0.0638 0.0273 0.0351 0.0131 0.0086 0.0080 0.1889 0.0196 0.0097 10.1580

bunny 50 0.0487 0.0309 0.0219 0.0090 0.0069 0.0063 0.0789 0.0096 0.0035 14.7060

argonath 6 0.3763 0.2707 0.1146 0.2341 0.0827 0.0393 42.1481 6.2328 0.1402 0.7281

argonath 10 0.3271 0.2104 0.0751 0.0919 0.0548 0.0314 12.6527 5.5259 0.2200 0.9053

argonath 20 0.1707 0.1538 0.0486 0.0482 0.0334 0.0214 4.4039 1.7451 0.0794 5.2204

argonath 30 0.0953 0.0401 0.0320 0.0197 0.0120 0.0119 0.8446 0.1481 0.0318 4.0973

argonath 40 0.0513 0.0282 0.0303 0.0149 0.0084 0.0089 0.3563 0.0245 0.0139 6.2986

argonath 50 0.0443 0.0237 0.0274 0.0097 0.0065 0.0067 0.2083 0.0196 0.0067 8.0372

lucy 6 0.4025 0.3718 0.0974 0.1601 0.1128 0.0549 45.0055 19.7607 0.5921 0.3424

lucy 10 0.4490 0.4405 0.1046 0.1599 0.1356 0.0499 44.8871 29.1435 0.4019 0.7341

lucy 20 0.4054 0.3611 0.0937 0.1161 0.0943 0.0349 27.0360 20.5396 0.8438 4.6527

lucy 30 0.1243 0.1190 0.0757 0.0358 0.0251 0.0232 1.5015 0.4685 0.0952 4.6289

lucy 40 0.1162 0.1166 0.0534 0.0258 0.0183 0.0164 1.3426 0.4506 0.0531 6.1530

lucy 50 0.1409 0.1176 0.0380 0.0227 0.0178 0.0140 1.4041 0.8705 0.0117 5.4008

igea 6 0.1716 0.1026 0.0602 0.1192 0.0561 0.0218 4.3137 1.1548 0.0158 1.2822

igea 10 0.1078 0.0727 0.0470 0.0554 0.0294 0.0164 1.3410 0.3004 0.0119 2.3998

igea 20 0.0653 0.0421 0.0569 0.0203 0.0149 0.0143 0.2639 0.0748 0.0151 4.3184

igea 30 0.0386 0.0276 0.0292 0.0116 0.0093 0.0087 0.0687 0.0237 0.0047 6.2384

igea 40 0.0296 0.0184 0.0237 0.0089 0.0071 0.0074 0.0368 0.0061 0.0023 7.4121

igea 50 0.0259 0.0136 0.0207 0.0075 0.0065 0.0067 0.0222 0.0049 0.0017 9.0712

armadillo 6 0.5501 0.4145 0.1573 0.2729 0.1810 0.0911 78.0223 33.4996 0.0651 1.0500

armadillo 10 0.3669 0.2590 0.1167 0.1816 0.1028 0.0490 35.4634 11.6023 0.1679 1.0748

armadillo 20 0.1925 0.1766 0.0495 0.0658 0.0488 0.0209 6.9130 3.7000 0.0893 4.1866

armadillo 30 0.1382 0.0931 0.0396 0.0283 0.0189 0.0129 1.4777 0.4933 0.0418 5.0136

armadillo 40 0.1067 0.0624 0.1335 0.0191 0.0116 0.0221 1.2729 0.2819 0.0149 2.7483

armadillo 50 0.0770 0.0573 0.0302 0.0125 0.0091 0.0085 0.3559 0.0883 0.0083 8.8009

teddy 6 0.2284 0.1726 0.1407 0.1369 0.0836 0.0587 11.9344 2.0409 0.0347 1.7151

teddy 10 0.1692 0.1615 0.1039 0.0922 0.0655 0.0418 4.4468 1.6534 0.0409 1.2807

teddy 20 0.1280 0.1122 0.0821 0.0363 0.0262 0.0255 1.0904 0.4025 0.0473 4.4172

teddy 30 0.0480 0.0279 0.0353 0.0177 0.0115 0.0113 0.1661 0.0561 0.0144 7.2587

teddy 40 0.0410 0.0232 0.0473 0.0117 0.0083 0.0090 0.0641 0.0361 0.0067 5.6651

teddy 50 0.0343 0.0266 0.0275 0.0092 0.0068 0.0070 0.0284 0.0093 0.0031 8.0650

spot 6 0.2901 0.3463 0.1325 0.2069 0.1743 0.0619 24.3347 11.6865 0.0313 1.2620

spot 10 0.2188 0.1574 0.0654 0.1177 0.0621 0.0291 10.7422 2.1484 0.0498 1.0666

spot 20 0.0932 0.0451 0.0508 0.0313 0.0176 0.0189 1.0994 0.2004 0.0602 4.6396

spot 30 0.0654 0.0474 0.0465 0.0158 0.0101 0.0092 0.2841 0.0871 0.0135 4.3807

spot 40 0.0320 0.0209 0.0231 0.0095 0.0069 0.0063 0.0520 0.0293 0.0043 7.5936

spot 50 0.0251 0.0264 0.0180 0.0077 0.0059 0.0056 0.0302 0.0112 0.0021 11.0150

Table 2: Quantitative Evaluation Data


	Abstract
	1 Introduction
	2 Related Work
	2.1 Signed Distance Fields
	2.2 Isosurfacing Approaches
	2.3 Mesh Optimization

	3 Method
	4 Discretization
	4.1 Mesh resolution and quality

	5 Results & Experiments
	5.1 Comparisons
	5.2 Parameters
	5.3 SDF sampling
	5.4 Beyond SDFs

	6 Discussion and Conclusions
	References

