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Abstract

Poisson Surface Reconstruction is a widely-used
algorithm for reconstructing a surface from an ori-
ented point cloud. To facilitate applications where
only partial surface information is available, or
scanning is performed sequentially, a recent line
of work proposes to incorporate uncertainty into
the reconstructed surface via Gaussian process
models. The resulting algorithms first perform
Gaussian process interpolation, then solve a set
of volumetric partial differential equations glob-
ally in space, resulting in a computationally ex-
pensive two-stage procedure. In this work, we
apply recently-developed techniques from geo-
metric Gaussian processes to combine interpo-
lation and surface reconstruction into a single
stage, requiring only one linear solve per sam-
ple. The resulting reconstructed surface samples
can be queried locally in space, without the use of
problem-dependent volumetric meshes or grids.
These capabilities enable one to (a) perform prob-
abilistic collision detection locally around the re-
gion of interest, (b) perform ray casting without
evaluating points not on the ray’s trajectory, and
(c) perform next-view planning on a per-ray ba-
sis. They also do not requiring one to approxi-
mate kernel matrix inverses with diagonal matri-
ces as part of intermediate computations, unlike
prior methods. Results show that our approach
provides a cleaner, more-principled, and more-
flexible stochastic surface reconstruction pipeline.

1. Introduction
Surface reconstruction algorithms are used to process
point cloud data—the most-common format in which real-
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world three-dimensional scans are captured—into other
downstream-usable formats, such as meshes or other surface
representations. Such algorithms are a key computational
primitive used in computer graphics pipelines.

The most widely-used approach is Poisson Surface Recon-
struction [17, 16]. It works by solving a partial differential
equation to compute an implicit surface representation—a
function where positive (resp. negative) values denote loca-
tions inside (resp. outside) the surface, with zeroes denoting
the surface. Its computation relies on standard numerical
techniques—most commonly the finite element method—
making it simple, reliable, and efficient on compute devices
well-suited to sparse linear algebra.

Real-world scans are necessarily imperfect: they involve
noise, measurement error, and may even need to gracefully
handle situations where parts of the object are occluded or
otherwise not observed by the camera. As a consequence,
surface reconstruction algorithms must both interpolate and
extrapolate from noisy and potentially incomplete data as
part of their computations. Poisson surface reconstruction
typically does this by blurring the data using a smooth ker-
nel: while simple and effective, this process does not quan-
tify uncertainty about interpolation or extrapolation.

To provide a richer characterization of the information con-
tained in a scan, a recent line of work proposes Stochastic
Poisson Surface Reconstruction [27]—a Bayesian formal-
ism which incorporates uncertainty about the scan through
the use of Gaussian process priors. The implicit surface
representation is then recovered by applying Bayes’ Rule
in the solution space of the respective Poisson equation’s
stochastic analog. This approach not only quantifies un-
certainty, it provides a potential path for selecting optimal
scan directions in a technically principled manner, mirror-
ing data acquisition techniques from areas such as Bayesian
optimization [11] and probabilistic numerics [13].

A key challenge in stochastic Poisson surface reconstruc-
tion is that it requires more complex computations than its
non-stochastic analogs. The simplest approach, proposed by
Sellán and Jacobson [27], is to first condition the Gaussian
process on point-cloud observations, then solve the required
Poisson equation to obtain the surface representation. Un-
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fortunately, this approach suffers from the classically-cubic
scalability of Gaussian processes: the authors handle this
by approximating kernel matrix inverses with diagonal ma-
trices. Then, finite elements are used to solve the Poisson
equation—a potentially expensive operation in its own right
due to reliance on a volumetric mesh or grid.

In this work, we study the following question: can one
compute the posterior of the implicit surface directly, with-
out solving separate linear systems for interpolating the
data and calculating the implicit surface? We answer this
affirmatively using methods from inter-domain Gaussian
processes, geometric Gaussian processes, and related areas.
Our techniques:

1. Produce posterior means, posterior covariances, and
posterior random function samples, up to a principled
set of approximations, using only kernel-matrix-based
linear solves. These are handled at graphics-scale with
standard scalable Gaussian process methods, without
involving the Poisson equation.

2. Avoid the use of mesh-based or otherwise global Pois-
son solves, allowing one to obtain the surface from
purely-local evaluations.

3. Eliminate the coupling between the discretization struc-
ture of the enclosed bounding box and the length scale
hyperparameter used in interpolation.

4. Analytically describe the Gaussian process induced by
the Poisson solve, and provide user control over length
scales and other hyperparameters which is retained in
solution space.

2. Stochastic Surface Reconstruction
The goal of an implicit surface reconstruction algorithm
is to produce a function f : R3 → R representing a solid
shape Ω ⊂ R3, given data consisting of an oriented point
cloud (xi, vi)

N
i=1, where xi ∈ ∂Ω and vi ∈ R3 are surface

normals to ∂Ω, both potentially noisy. To represent the
surface, f should take positive values inside of Ω, negative
values outside of it, so that the zero level set ∂Ω is the
reconstructed surface. Throughout this work, we use bold
italic letters such as a, b to refer to vectors corresponding
to batches of data, and bold upface letters such as A, B to
refer to corresponding matrices, with the convention that
functions act on such terms component-wise.

2.1. Stochastic Poisson Surface Reconstruction

Poisson surface reconstruction is the most widely-used sur-
face reconstruction algorithm, with numerous applications
in computer graphics [28, 15, 4] and beyond [1, 12, 24]. It
works as follows: first, the point cloud is interpolated onto
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Figure 1. Like prior work in stochastic reconstruction [27, 26], we
choose to represent the space of shapes determined by an input
point cloud (left) through a volumetric Gaussian Process (middle)
from which standard statistical quantities can be extracted (right).

a volumetric finite element mesh to produce a vector field
v : R3 → R3 for which v(xi) ≈ vi. Then, one reconstructs
f , the implicit representation of ∂Ω, by numerically solving
the Poisson equation

∆f(x) = ∇ · v(x) (1)

over a hypercube [0, 1]3, subject to Neumann boundary
conditions ∇f · n = 0 at the hypercube’s boundary, where
n are the normals. Given the surface is a priori unknown,
the most common approach is to choose the mesh to be a
regular grid, with v obtained using trilinear interpolation—
see Kazhdan et al. [17] for further details.

To enable the surface reconstruction algorithm to assess
and propagate uncertainty for downstream use, Sellán and
Jacobson [27, 26] propose Stochastic Poisson Surface Re-
construction: instead of a deterministic v, they place a Gaus-
sian process prior v ∼ GP(0, k) over the vector field, and
calculate the respective posterior distribution in order to
interpolate the point cloud data in an uncertainty-aware
manner. Then, they solve a stochastic analog of (1), obtain-
ing a random function f | v, which can be interpreted as
the posterior distribution of the implicit surface given the
point cloud data. This can be seen in Figure 1.

From a computational perspective, the resulting stochastic
formulation is significantly more involved than ordinary
Poisson reconstruction. Note that, since the Poisson equa-
tion is linear, f | v is itself a Gaussian process—we review
this and other relevant properties of Gaussian processes in
the next section. Leveraging this, Sellán and Jacobson [27]
propose an approach which computes the mean µf |v and
covariance kf |v using the respective finite-element Lapla-
cian L and divergence matrix Z, as well as the kernel ma-
trices Kvv and K∗v for the training and test points, re-
spectively. To facilitate computation at point cloud sizes
typical in graphics applications, Sellán and Jacobson [27]
rely on the fact that L and Z are sparse, and approximate
K−1

vv ≈ diag(σgρv)
−1, where σg is a hyperparameter and

ρ is a vector measuring local sampling density.
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SPSR variance with decreasing length scale This work: variance with decreasing length scale

Input point
cloud 5 seconds 5 seconds 5 seconds650 seconds80 seconds13 seconds

Figure 2. Our method removes the interpolation length scale’s dependence on any grid resolution, therefore the cost to evaluate the
posterior is independent of the length scale. Further, our method enables local evaluation leading to faster computations when we do not
require global results. In contrast, the SPSR baseline is grid-dependent and unable to represent the correct variance at lower length scales.

The resulting method enables one to perform a number of
queries that are useful in computer graphics and vision ap-
plications, like casting rays against the uncertain surface,
deciding on a best next view and computing collision like-
lihoods. It also comes with a number of limitations. (i)
One needs to solve the Poisson equation globally on the
full domain, even if one is only interested in queries in a
small region of space. Recent work has proposed ways to
avoid this for non-stochastic Poisson surface reconstruction
[8]. (ii) This solution is only obtained on a fixed grid, and
one must either perform interpolation for non-grid points,
or learn their values using a neural network [26], at the cost
of efficiency and convergence guarantees. This artificially
ties the length scale of the GP kernel to the resolution of the
utilized grid—see Figure 2. (iii) The approximations used,
such as for the inverse covariance, can make uncertainty
behavior difficult to control. One of our goals, in this work,
will be to reduce these limitations.

2.2. Geometric Gaussian Processes and Periodic Kernels

A Gaussian process f ∼ GP(µ, k) is a random function
where, given a finite set of input points x = (x1, .., xN ),
the output f(x) ∼ N(µ,Kxx) is multivariate normal with
mean µ = µ(x) and covariance Kxx = k(x,x). A key
property of Gaussian processes is that their conditional dis-
tributions f | y, given data f(x) = y, are also Gaussian pro-
cesses with explicit means and covariances. For an overview
of these properties, see Rasmussen and Williams [25].

The techniques we develop will rely on ideas from geomet-
ric Gaussian processes—that is, Gaussian processes whose
domain is not Rd but instead has geometric structure. Specif-
ically, we work with Gaussian processes f : Td → R over
the d-dimensional torus Td. The kernels of such Gaussian
processes can be viewed as periodic functions on Rd: we
thus refer to them as periodic kernels.

We work with the class of periodic Matérn kernels of
Borovitskiy et al. [6], denoted kν , ν ∈ R+. These ker-
nels admit analytic expressions for d = 1 and ν half-integer.
For ν = 1/2, the kernel—and a closely-related expression

ρkν : Zd → R called the spectral measure of k—are

k1/2(x, x
′) = cosh

(
2π|x− x′| − 1

2

κ

)
(2)

ρk1/2
(x, x′) = 2 sinh

(
1

2κ

)(
1

κ2
+ 4π2n2

)−1

. (3)

We will make use of a number of properties of such kernels
in our work. In particular, periodic Matérn kernels are
stationary, in the sense that k satisfies k(x+c, x′+c) for any
x, x′, c ∈ Td, where addition is defined in terms of angles.
Under mild regularity conditions, one can show—see for
instance Borovitskiy et al. [6], Theorem 5 and Appendix
B—that such k admit the Mercer’s expansion

k(x, x′) =
∑
n∈Zd

ρk(n)fn(x)fn(x
′) (4)

where each fn is either a sine or cosine, with frequency
determined by n. Using orthonormality of sines and cosines,
can factor this expression to find an analogous representation
for the Gaussian process prior f : this gives the Karhunen–
Loève expansion

f(x) =
∑
n∈Zd

√
ρk(n)ξnfn(x) ξn

iid∼ N(0, 1). (5)

For a formal treatment, see Borovitskiy et al. [6]. These
expansions will play a central role in our computations.

3. Stochastic Poisson Surface Reconstruction
Stochastic Poisson Surface Reconstruction offers techni-
cal capabilities that go beyond the classical, deterministic
Poisson reconstruction algorithm—yet, this stochasticity
greatly complicates the computational pipeline needed to
efficiently run it. The original work by Sellán and Jacob-
son [27] proposes a pipeline that mimics classical Poisson
reconstruction, in the sense that once Gaussian process in-
terpolation is performed, a traditional finite-element-based
computation is used to calculate the implicit surface. While
our goal will be to broadly improve the technical capabilities
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of SPSR, we will start by asking: within a Gaussian process
formalism, can one calculate the implicit surface directly,
without solving more than one linear system?

3.1. Bypassing the Poisson Solve using Geometric
Gaussian Processes

We now proceed to answer the above initial guiding question
affirmatively. The mean and covariance of our Gaussian
process, assuming a centered prior, are

µf |v(·) = Kf(·)v(Kvv +Σ)−1v (6)

kf |v(·, ·′) = k(·, ·′)−Kf(·)v(Kvv +Σ)−1Kvf(·′). (7)

Alternatively, rather than calculate means and covariances,
one can work with Monte Carlo samples from the posterior.
This avoids needing to store posterior covariances, which
contain O(N2) entries, in memory. We can sample from
the posterior using the inter-domain Gaussian process [18]
form of pathwise conditioning [32, 33], which is

(f | v)(·) = f(·)+Kf(·)v(Kvv+Σ)−1(v−v(x)−ε) (8)

where equality holds in distribution. Note that none of the
quantities arising from either the mean and covariance, or
the pathwise conditioning expression, are grid-dependent.
To compute the posterior, beyond efficiently solving a stan-
dard linear system of the Gaussian process type, which we
will return to in the sequel, we need to compute either one
or two additional kinds of expressions:

(b) The cross-covariance term kf,v(x, x
′).

(a) If computing posterior samples, joint samples of the
prior vector field v and its induced implicit surface f
defined by ∆f = ∇ · v.

At first, this appears challenging: both quantities we need
to compute fundamentally involve the Poisson equation,
which in general one must solve numerically. However, if
we are able to do so, the Poisson solve is removed: it suf-
fices to solve the random linear system once—the Poisson
solve is, effectively, replaced by a grid-independent matrix
multiplication.

To achieve this, the key idea will be to leverage the fact
that both the Poisson equation, and appropriately-chosen
Gaussian processes, are very-well-behaved in the Fourier
domain [10, 6, 5, 3]. For this, we make two assumptions:

1. The prior covariance kernel k is a product of stationary
periodic kernels.

2. The Poisson equation defining the implicit surface has
periodic boundary conditions.

Input

Variance

Mean

L = 7 L = 19 L = 29 L = 393 3 3 3

Figure 3. The number of Fourier basis functions used, L, is a key
hyperparameter in our algorithm: experimentally, we find that
using too few results in a loss of high frequency detail and observe
diminishing returns beyond L = 203.

These assumptions enable us to apply the geometric Gaus-
sian process machinery introduced previously: one can view
both the vector field and implicit surface as functions on
the torus, namely v : Td → Rd and f : Td → R. Be-
fore proceeding, note that compared to the default setup,
we have not lost anything substantive: the original Neu-
mann boundary conditions of Kazhdan et al. [17] and Sellán
and Jacobson [27] were selected primarily for convenience
in the first place, and in practice one places the surface
sufficiently-away from the bounding box to limit its impact.

With the Fourier domain in place, we can apply the Mer-
cer’s and Karhunen–Loève decompositions of Section 2.2
to express the cross-covariance as a Fourier series.

Proposition 1. Let v ∼ GP(0, k) where k is a product
of sufficiently-smooth one-dimensional stationary periodic
kernels, and define f by ∆f = ∇·v, with periodic boundary
conditions. Then

kf,vi(x, x
′) =

∑
n∈Zd

n̸=0

ni

√
ρki

(n)

∥n∥2
sin(⟨n, x− x′⟩). (9)

All proofs are given in Appendix A. Using this expression,
we can compute the cross-covariance matrix Kf(·)v approx-
imately by truncating (9). We now show that the same tech-
niques also allow us to efficiently jointly sample f and v.

Proposition 2. Under the same assumptions as Proposi-
tion 1, the random functions f and v can jointly be written

vi(·) =
∑
n∈Zd

√
ρki(n)

(
ξi,n,1 cos(⟨n, ·⟩)
+ ξi,n,2 sin(⟨n, ·⟩)

)
(10)

f(·) =
∑
n∈Zd

n̸=0

d∑
i=1

ni

√
ρki

(n)

∥n∥2

(
ξi,n,1 sin(⟨n, ·⟩)
− ξi,n,2 cos(⟨n, ·⟩)

)
(11)

where ξi,n,j
iid∼ N(0, 1).
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Figure 4. We compare direct cross-covariance computation by trun-
cating the Fourier series with its amortized analog, in terms of ac-
curacy (kernel matrix MSE evaluated at a random batch of points)
and runtime. Approximation quality is determined by number of
Fourier coefficients and amortization grid size, respectively. Amor-
tization can substantively improvement runtimes when its error
level and initial training cost are acceptable.

Together, these expressions give us a way, in principle, to
obtain either means and covariances, or random samples,
from f | v, the latter via the pathwise conditioning ex-
pression (8)—so long as we can scalably solve the linear
system, and compute all of the respective Fourier series.
The computational cost of assembling the cross-covariance
is O(LMN), and, for sampling, the cost of computing the
necessary set of prior samples is O(L′NP ), where L and
L′ are the number of Fourier basis functions used for the
cross-covariance and prior, respectively, N is the size of the
training data, M is the size of the test data, and P is the
number of Monte Carlo samples needed. A visualization of
how the resulting approximation error affects reconstruction
fidelity is given in Figure 3. Following Wilson et al. [32, 33],
one can expect to need L′ ≪ L basis functions, due to the
Fourier basis’ efficiency at representing random functions
drawn from the prior. We will address computations costs
of the cross-covariance term further in the sequel, but first
proceed to handling the linear system.

3.2. Scalability: Training Data Size

A key challenge of working with Gaussian process methods
in computer graphics applications is that they require one to
solve dense linear systems, typically at cost O(N3)—where,
in our setting, N scales according to the number of points in
the point cloud. While this may seem as a major challenge,
observe that the (random) linear system of interest, namely

(Kvv +Σ)−1(v − v(x)− ε) (12)

is identical in form to the linear system which appears in
ordinary Gaussian process regression—and, indeed, in ker-
nel ridge regression. The situation for computing posterior
covariances is similar. This means that, even though we are
in an interdomain setting which involves the Poisson equa-
tion and other machinery, we can apply standard large-scale
Gaussian process techniques in an unmodified manner—all

Input point 
cloud Increasingly conservative hitbox

Figure 5. A stochastic formalism for surface reconstruction allows
us to construct conservative hitboxes or cages for collision detec-
tion that account for geometric uncertainty.

of our additional machinery kicks into play only once the
solve is done.

With this in mind, the question becomes how to select an
appropriate linear-time Gaussian process approximation.
Since correctly capturing the fine details of the object is
a key goal of surface reconstruction, we restrict ourselves
to approximations which are designed to perform well in
large-domain regimes [19, 30] where the kernel’s length
scale is small relative to the domain covered by the data.
In such regimes, inducing point methods [31, 14]—which
are otherwise popular and efficient—are known to perform
poorly [19, 30]. Where Cholesky factorization is not viable,
we therefore apply the sampling-based stochastic gradient
descent approach of Lin et al. [19, 20], which was shown in
those works to perform well at data sizes up to N ≈ 20m
in these regimes.

3.3. Amortized Cross-Covariance Computation

We now re-examine the cross-covariance computation,
which costs O(LMN) to assemble, if computed via trun-
cation. In contrast with the prior samples for f and v—
where, by L2-optimality of the Fourier basis for represent-
ing stationary Gaussian processes, a relatively-small number
of Fourier basis functions suffice [32, 33]—for the cross-
covariance term, the number of Fourier basis functions L
needed to ensure accurate computation can become large,
even in dimension three. To avoid this computation be-
coming the most-expensive part of the overall pipeline, we
propose an amortization scheme built as follows.

Observe that, owing to stationarity, the cross-covariance
kf,v(x, x

′) depends only on the distance x − x′ ∈ R3.
Moreover, this term does not depend on any hyperpa-
rameters except the model’s length scale—and, thus, is
problem-independent. Furthermore, it is smooth, since
lower-frequency Fourier terms in the Mercer’s expansion
have larger coefficients.

Taking advantage of these observations, we propose to pre-
compute kf,v on a grid in [0, 2π]d and apply simple linear
interpolation to evaluate kf,v at other input locations. While
this ostensibly makes our approach grid-dependent—part
of what we wanted to avoid in the first place—note again
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Figure 6. Through a pathwise-conditioning-based approach, our algorithm allows us to sample different possible surfaces from the
Gaussian process determined by the input point cloud. This is to be contrasted with SPSR [27], which produces irregular samples due to
various (including potentially diagonal) approximations for the covariance—a set of samples is shown in Appendix C.

that kf,v is smooth and problem-independent. This should
be contrasted with the Poisson equation’s solution, which
is by definition problem-dependent and whose smoothness
is completely dependent on properties of the surface being
reconstructed. As consequence, one can expect grid-based
amortization of kf,v to be substantially-less-difficult than
the original, grid-based Poisson solve we sought to avoid.
We examine its efficiency quantitatively in Figure 4.

3.4. Supported Statistical Queries

A key difference in our computational pipeline, compared
to ordinary Stochastic Poisson Surface Reconstruction, is
that we also allow Monte Carlo sampling, rather than only
supporting computations using means and covariances. We
thus detail how various posterior queries can be handled.

Collision detection. This involves computing the proba-
bility the reconstructed surface intersects a given known
object. We handle this by sampling M points on the
surface of the known object, denoted xi, and computing
P(f(xi) ≥ 0,∀i = 1, ..,M) from the samples.

Ray-casting. This works similarly to collision detection:
we compute the transmittance, which amounts to the joint
probability the ray has not hit the object. Letting xt be the
path of the ray, this is P(f(xt) ≤ 0,∀t = 0, .., T ).

Uncertainty-aware hitbox generation. The standard ap-
proach for generating hitboxes is to uniformly scale-up the

object, then simplify its geometry, One can generalize this to
an uncertainty-aware approach by scaling the object more in
regions with higher uncertainty, for instance by defining the
hitbox according to the implicit surface given by a function
of the form g(x) = µf |v(x)− η

√
kf |v(x, x), defined using

the posterior mean and standard deviation. Here, for differ-
ent values of η, the higher the value, the more conservative
the hitbox. Extracting the zero level set as a triangle mesh
can then be done using standard contouring algorithms such
as marching cubes [22], as shown in Figure 5.

Next-view planning. A key advantage of having a prob-
abilistic formalism is that, following approaches in areas
like Bayesian optimization [11] and probabilistic numerics
[13], one can use the obtained uncertainty to adaptively se-
lect where to gather data next. For scanning, Sellán and
Jacobson [27] propose to adaptively select camera angles by
optimizing a quantity termed the total uncertainty, which is
defined to be the expression∫

B

(0.5− |P(x ∈ Ω)− 0.5|) dx. (13)

This formulation involves computing the uncertainty over
the entire volume to evaluate the score of a single ray, mak-
ing it potentially expensive. Note, however, that this limita-
tion does not affect SPSR, which requires one to query the
GP over the entire volume in order to perform the Poisson
solve in the first place.

Since our single-solve strategy allows us to more-efficiently
query the GP a smaller set of points compared to the whole
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Figure 7. By querying joint probabilities from the Gaussian pro-
cess produced with our algorithm, we can compute the collision
probability of the three cats with the partially observed dragon.
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Figure 8. Our method’s support for joint probability queries enable
us to perform sequential scanning by adaptively selecting the next
view in order to minimize total uncertainty.

volume—we show this in Figure 8, and discuss further in
Section 4—we propose a modified approach which only
relies on computing a function over the desired ray. For a
given camera position and angle, let xt be a sequence of
points along the center ray, where t refers to the total travel
distance. Using these points, we compute the transmittance

T (t) = P(f(xτ ) > 0,∀τ ≤ t). (14)

We then compute the total distance where the center ray is
not approximately equal to zero or one, namely∫ ∞

0

1ε≤T (t)≤1−ε dt (15)

for a given ε > 0. Intuitively, this measures the range of
possible distances the surface can be from the ray origin.

4. Experiments and Applications
We now demonstrate the proposed approach empirically on
a suite of example problems. Given its identical problem
statement and similar theoretical backdrop, we use the origi-
nal Stochastic Poisson Surface Reconstruction (SPSR) work
by Sellán and Jacobson [27] as our main evaluation baseline,
for which we utilize the authors’ open-source implemen-
tation [29]. Implementation details and other experiment
information is given in Appendix B.

4.1. Comparisons

To begin, we verify that our proposed algorithm output
qualitatively performs at least as well as the baseline, even

0
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Distance along ray

Transmittance

0

1

Distance along ray

Transmittance

0

1

Distance along ray

Transmittance

0

1

Distance along ray

Transmittance

Figure 9. Our statistical formalism allows us to compute joint col-
lision probabilities along a specific direction. In graphics, this
equates to the transmittance of a cast ray, a quantity that can be
used to score potential future camera positions (greener is better).

though the computational pipeline used is almost completely
different. In Figure 1 and Figure 3, mirroring Figure 11 of
Sellán and Jacobson [27], we see that the mean and variance
produced by our approach, as well as probability queries,
behave in a similar qualitative manner to those of that work.

Next, we demonstrate that our approach can provide func-
tionality which is either not supported by SPSR, or on which
SPSR scales poorly. Of the capabilities described in Sec-
tion 3, we focus first on the property that it avoids the need
to compute a finite element solve over a volumetric mesh or
grid. A consequence of this requirement for the SPSR base-
line is that the model’s ability to resolve fine details is not
controlled purely by the Gaussian process’ length scale, and
is instead also limited to the refinement level of the finite ele-
ment mesh, which in turn is limited by the system’s memory.
Figure 2 shows that, in contrast, our model’s predictions
continue to become sharper as length scales decrease.

By avoiding a finite-element-based Poisson solve, our algo-
rithm is also output-sensitive: Figure 11 shows that, unlike
SPSR, our proposed algorithm’s runtime scales with the
number of queried points, and not with the size of an entire
volumetric grid enclosing the point cloud. This is a critical
advantage in many common high-performance computer
graphics applications, like ray casting or collision detec-
tion, where the stochastic surface need only be queried at a
smaller, potentially lower-dimensional number of points in
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Figure 10. Using our formalism, we showcase random samples drawn from f at a reduced set of points—here, a ray—without the need to
query the Gaussian process at a large volumetric bounding box.

space—for instance, along a line or plane, rather than over
a three-dimensional volume.

Finally, both SPSR and its neural-network-based follow-up
[26] discard all correlations between the input data by ap-
proximating the sample covariance with a diagonal matrix.
This approximation—which is not theoretically justified
beyond very specific configurations—makes SPSR unable
to effectively answer statistical queries that rely on corre-
lations. As we show in Figure 6, our approach directly
generates smooth samples from the reconstructed surface,
in contrast with samples arising from SPSR’s diagonal ap-
proximation to the inverse kernel matrix, where smoothness
comes purely from the Poisson solve performed at the end.
This capability combines with output-sensitivity: from Fig-
ure 10 shows the proposed method is able to sample along
a set of points given by a single ray without requiring any
global Poisson-solve-like volumetric computation. While
here we limit ourselves to qualitative demonstrations, to con-
clude, we note that handling correlations and smoothness
well a critical part of principled data-acquisition algorithms
such as, for instance, in Bayesian optimization: we hope the
capabilities showcased potentially pave the way for similar
tools in computer graphics applications.

In summary, examining the aforementioned figures, we find
that our algorithm qualitatively matches the outputs pro-
duced by SPSR while alleviating a number of its limitations.
We now examine how this affects downstream applications
of stochastic surface reconstruction.

4.2. Applications

The most basic stochastic reconstruction task relevant in
computer graphics, vision and robotics applications is the
computation of containment queries: for example, to find if
a projectile hits a target, if an autonomous car collides with
an obstacle, or if a grasping pose is free of intersections.
Our Gaussian process formulation allows us to answer these
queries through the computation of marginal probabilities
when the location is zero-dimensional—see Figure 3 and

This work

SPSR

Querying GP on a single line: 10 min

Querying GP on a plane: 10 min

Querying GP on entire volume: 10 min

Querying GP on a single line: 4 s

Querying GP on a plane: 33 s

Querying GP on entire volume: 7.5 min

in GPU: 0.8 s

in GPU: 1.0 s

in GPU: 25 s

Figure 11. Our single-solve stochastic reconstruction algorithm is
output sensitive: its complexity scales linearly with the number of
test points (bottom). This is in contrast to SPSR, which requires a
global volumetric FEM solve regardless of the required test set.

Figure 1—or through joint probabilities when these are one,
two or three-dimensional—see Figure 7 and Figure 11. In
comparison with the SPSR baseline, the output-sensitivity of
our method make it ideal for containment tasks like this one,
in which the captured scene—such as an entire streetscape or
room—can be significantly larger than the relevant queried
surface—such a car parked on the street, or a robotic gripper.

One of our method’s limitations is that, even with our
improved, output-sensitive performance, formally comput-
ing collision likelihoods may be beyond the computational
requirements of real-time applications. Figure 5 shows
that, for these cases, our method can be used to generate
uncertainty-aware hitboxes for shapes in the form of tri-
angle meshes, such that they can be efficiently tested for

8
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intersection, using the uncertainty-aware approach outlined
in Section 3.4.

In Figures 8 to 10, we show how our algorithm can be
applied to the prototypical stochastic reconstruction applica-
tion of ray casting and next best view planning. In particular,
Figure 9, inspired by Figure 26 of Sellán and Jacobson [27],
combines computing the shape’s transmittance with scoring
a set of potential future camera positions to select the op-
timal next view, outlined further in Section 3.4 for details.
Unlike SPSR, using our approach to compute the score of
each camera position requires querying the Gaussian pro-
cess along the proposed one-dimensional camera ray, and
not an entire volumetric grid surrounding the point cloud.

5. Conclusion
In this paper, we introduced a reformulation of stochastic
Poisson surface reconstruction which requires only one lin-
ear solve, for performing Gaussian process interpolation.
This is in contrast with prior work, which requires addi-
tional linear solves arising from its use of a volumetric finite
element method. This was achieved by applying tools from
geometric Gaussian processes in Fourier space, which ef-
fectively replaces the solve with multiplication by a matrix
whose entries are given by a certain Fourier series. As a
result of this formulation, the proposed method’s compu-
tational costs are output-sensitive, in the sense that they
scale with the number of points at which the posterior Gaus-
sian process is evaluated, and not on the size of volumetric
meshes or analogous quantities which depend on the space
enclosing the object. The proposed method was shown to
support the same set of statistical queries as prior work, and
additionally provide new, random-sampling-based queries
which take into account smoothness properties captured by
the kernel’s correlations. Our work constitutes a first step to
incorporating sample-efficient data acquisition techniques
from the Gaussian process and Bayesian optimization litera-
tures into surface reconstruction and computer graphics.

Impact Statement
This paper presents work whose goal is to apply recent
advances in machine learning in order to advance the field
of computer graphics. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Theory
Here we prove the propositions which state the cross-covariance and prior sample expressions for the Gaussian process prior
and its respective Poisson equation solution. In what follows, by sufficiently smooth we mean that each ki lies in the Sobolev
space H

3
2+

d
2 (Td × Td;R): for the periodic Matérn kernels used in this work, with ν ≥ 3

2 , this is guaranteed by Azangulov
et al. [2, 3], Theorem 20—see also De Vito et al. [9] and Borovitskiy et al. [6]. By standard stochastic PDE theory [23], this
condition ensures that the Poisson equation ∆f = ∇ · v admits an almost sure weak solution which is unique up to constant
shifts. Taking the constant shift part to be zero, by the same theory, this solution can be viewed as a Gaussian process which
is almost surely continuous. It also follows that ρk defines a finite measure, meaning

∑
n∈Zd ρk(n) is finite. We first derive

the prior sampling formulas, as we will use them in the cross-covariance calculation.

Proposition 2. Under the same assumptions as Proposition 1, the random functions f and v can jointly be written

vi(·) =
∑
n∈Zd

√
ρki

(n)

(
ξi,n,1 cos(⟨n, ·⟩)
+ ξi,n,2 sin(⟨n, ·⟩)

)
(10)

f(·) =
∑
n∈Zd

n̸=0

d∑
i=1

ni

√
ρki

(n)

∥n∥2

(
ξi,n,1 sin(⟨n, ·⟩)
− ξi,n,2 cos(⟨n, ·⟩)

)
(11)

where ξi,n,j
iid∼ N(0, 1).

Proof. We first describe a formal calculation which gives the desired expression, deferring a discussion on regularity to the
end. Note that each ki is stationary and continuous by assumption: hence, each vi admits a Karhunen–Loève expansion

vi(x) =
∑
n∈Zd

√
ρki(n)(ξi,n,1 cos(⟨n, x′⟩) + ξi,n,2 sin(⟨n, x′⟩)) ξi,n,j ∼ N(0, 1) (16)

where ρki
(n) are the respective spectral measures of the kernels ki. On the other hand, note that since both the Laplacian

and divergence operators are shift-equivariant, it follows that f is also stationary. Since f is almost surely continuous, its
covariance is as well, and it admits a Karhunen–Loève expansion

f(x) =
∑
n∈Zd

√
ϕ(n)(ζn,1 cos(⟨n, x⟩) + ζn,2 sin(⟨n, x⟩)) ζn,j ∼ N(0, 1). (17)

By definition, ∇ · v = ∆f : we now formally calculate the gradient and Laplacian of the respective expansions. These are

(∇ · v)(x) =
∑
n∈Zd

d∑
i=1

ni

√
ρki

(n)(−ξi,n,1 sin(⟨n, x′⟩) + ξi,n,2 cos(⟨n, x′⟩)) (18)

and
(∆f)(x) =

∑
n∈Zd

−∥n∥2
√

ϕ(n)(ζn,1 cos(⟨n, x⟩) + ζn,2 sin(⟨n, x⟩)) (19)

where, since under L2-regularity these expressions cannot be understood as actual random functions in the obvious sense,
we defer a rigorous definition of their precise meaning to later. Continuing the calculation, since sines and cosines are
linearly independent, these series must be equal term-by-term. This means

d∑
i=1

ni

√
ρki

(n)ξi,n,1 = ∥n∥2
√
ϕ(n)ζn,2 −

d∑
i=1

ni

√
ρki

(n)ξi,n,2 = ∥n∥2
√

ϕ(n)ζn,1 (20)

where ϕ(n) and ζn,j must be chosen such that the latter are IID standard normal. Choosing

ϕ(n) =

∑d
i=1 n

2
i ρki

(n)

∥n∥4
ζn,1 =

−
∑d

i=1 ni

√
ρki

(n)ξi,n,2√∑3
i=1 n

2
i ρki(n)

ζn,2 =

∑d
i=1 ni

√
ρki

(n)ξi,n,1√∑d
i=1 n

2
i ρki

(n)
(21)
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produces a coupling which satisfies these requirements. To complete the proof, we must give rigorous meaning to the formal
computations performed above. To do so, following an approach mirroring Borovitskiy et al. [6], we reinterpret ∇ · v and
∆f as generalized Gaussian fields in the sense of Lototsky and Rozovsky [23]—that is, we interpret differentiation as acting
on the respective covariance operators defined by the Mercer’s expansion of both random fields. Under this interpretation,
the maps ∆, ∆−1, and ∇· (·) can be lifted to act on the respective covariances instead of the stochastic processes themselves:
following De Vito et al. [9], when restricted to the appropriate Sobolev spaces, these maps are continuous and bijective up to
appropriate constant shifts. Using this, one can calculate the generalized Gaussian field corresponding to the image of v
under the Poisson equation’s solution map, and from it obtain a Mercer’s expansion. From this, one directly obtains the
respective Karhunen–Loève expansion: equating this to the expansion of f above produces a calculation whose steps—up to
working with modified definitions—and result match what is given above.

With these expressions derived, we are now ready to calculate the respective cross-covariance.

Proposition 1. Let v ∼ GP(0, k) where k is a product of sufficiently-smooth one-dimensional stationary periodic kernels,
and define f by ∆f = ∇ · v, with periodic boundary conditions. Then

kf,vi(x, x
′) =

∑
n∈Zd

n̸=0

ni

√
ρki

(n)

∥n∥2
sin(⟨n, x− x′⟩). (9)

Proof. Applying Proposition 2, this follows by direct calculation:

Cov(f(x), vi(x
′)) = E(f(x)vi(x′)) (22)

= E

∑
n∈Zd

√
ϕ(n)(ζn,1 cos(⟨n, x⟩) + ζn,2 sin(⟨n, x⟩))

 (23)

×

∑
n∈Zd

√
ρki

(n)(ξi,n,1 cos(⟨n, x′⟩) + ξi,n,2 sin(⟨n, x′⟩))

 (24)

= E
∑
n∈Zd

√
ϕ(n)ρki(n)(ζn,1 cos(⟨n, x⟩) + ζn,2 sin(⟨n, x⟩))(ξi,n,1 cos(⟨n, x′⟩) + ξi,n,2 sin(⟨n, x′⟩)) (25)

= E
∑
n∈Zd

−ni

√
ρki

(n)ξ2i,n,2

∥n∥2
cos(⟨n, x⟩) sin(⟨n, x′⟩) +

ni

√
ρki

(n)ξ2i,n,1

∥n∥2
sin(⟨n, x⟩) cos(⟨n, x′⟩) (26)

=
∑
n∈Zd

−ni

√
ρki

(n)

∥n∥2
cos(⟨n, x⟩) sin(⟨n, x′⟩) +

ni

√
ρki

(n)

∥n∥2
sin(⟨n, x⟩) cos(⟨n, x′⟩) (27)

=
∑
n∈Zd

ni

√
ρki(n)

∥n∥2
sin(⟨n, x− x′⟩) (28)

where we pass the expectation inside the infinite series using Fubini’s Theorem, for which we now verify that absolute
integrability holds. To see this, first note that ni

∥n∥2 ≤ 1 and |sin(·) cos(·′)| ≤ 1, then write
∑

n∈Zd E
√
ρki

(n)ξ2i,n,j =∑
n∈Zd

√
ρki(n) ≤

√∑
n∈Zd ρki(n) < ∞, where the second-to-final step is by Jensen’s inequality, and finiteness of the

sum follows from the assumed smoothness of k. We conclude that all necessary sums and expectations are finite and do not
depend on the order of integration, from which the claim follows.

B. Experimental Details
Implementation. We implement our algorithm in Python using GPYTOOLBOX [29] for common geometry processing
subroutines, JAX [7] for numerical computations, and render our results in Blender using BLENDERTOOLBOX [21]. All
reported timings are calculated on a machine running Ubuntu 20.04 with an Intel Xeon Silver 4316 CPU, 256GB RAM, and
an Nvidia RTX A6000 GPU. All of our results use the Matérn kernel with ν = 3/2 and length scales between 4 · 10−2 and
1 · 10−2, depending on the specific mesh. Unless specified otherwise, we use L = 1003 functions for the cross-covariance
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and L′ = 403 functions for the prior samples. The cross-covariance is amortized using a total of 503 points. To generate an
amortization grid, we first evenly sample [−1, 1] with 50 points, raise them to the 5th power in order to concentrate values
near the origin, multiply by π to obtain points in [−π, π], then take the Cartesian product for each dimension.

Meshes. The Armadillo, Bunny, Falcon, Scorpion, Springer, Tree, and Well meshes are from Oded Stein’s repository, at:
ODEDSTEIN.COM/MESHES. The Dragon mesh is originally from the Stanford 3D Scanning Repository—we use the version
from Alec Jacobson’s repository, at: GITHUB.COM/ALECJACOBSON/COMMON-3D-TEST-MODELS/.

Kernel numerical stability. The geometric Matérn-3/2 kernel on T1, given by Borovitskiy et al. [6] can be numerically
unstable, particularly for small length scales, say on the order of 10−2. This occurs due to the specific form of various
hyperbolic functions in the formula. To improve stability in floating point arithmetic, we equivalently rewrite the kernel as

k3/2(x, x
′) =

σ2

C3/2

(
π2κ

3

(
2κ+

√
3 coth

(√
3

2κ

))
cosh(u)− 2π2κ2

3
u sinh(u)

)
(29)

=
σ2π2κ

3C3/2

2κ+

√
3

tanh
(√

3
2κ

)
 cosh

(w
κ

)
− 2w sinh

(w
κ

) (30)

=
σ2π2κ

3C3/2

2κ+

√
3

tanh
(√

3
2κ

) − 2w tanh
(w
κ

) cosh
(w
κ

)
(31)

=
σ2π2κ

6C3/2

2κ+

√
3

tanh
(√

3
2κ

) − 2w tanh
(w
κ

)exp

(
w−

√
3

2

κ

)
+ exp

(
−w−

√
3

2

κ

)
exp
(
−

√
3
2

) (32)

where distances run from 0 to 1, u =
√
3
|x−x′|− 1

2

κ , w =
√
3|x− x′| −

√
3
2 , C3/2 is a constant which ensures k(x, x) = σ2,

and κ is the length scale parameter. Our implementation uses the unnormalized version of this expression.

C. Additional Results
Visualization of samples from SPSR baseline. Here we provide a visual illustration of samples generated by the SPSR
baseline, using its provided mean and covariance. We use a total of 253 points, then compute the mesh via marching cubes.
Given the interplay between the grid spacing and kernel length scale imposed by SPSR, this coarse grid equates to a large
length scale which produces over-smoothing. In turn, unfortunately, using a finer grid—specifically, the 1003 grid from
Figure 6—is not feasible given the memory available on our system, due to the need to form a large covariance matrix.
The obtained samples are shown in Figure 12, and are seen to fail to capture a substantial portion of the reconstructed
surface’s fidelity due to over-smoothing. This is the case even in well-sampled regions such as the front of the surface, due
to the aforementioned interaction between length scale and grid spacing. In comparison, samples obtained from the correct
posterior, when computed using the techniques of our work shown in Figure 6, are qualitatively much sharper. This is in part
because our approach allows for a much-larger set of 1003 points, which is feasible because it provides samples directly,
without requiring the formation of a large covariance matrix.

Figure 12. Random samples drawn using the SPSR baseline.
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Comparison of SGD vs. Cholesky. Here we examine the behavior of using SGD for the kernel matrix solve and compare
it to the standard method of using Cholesky decomposition. Throughout this work, we use the dual SGD variant proposed
by Lin et al. [20]. We observe in Figure 13 that SGD is able to provide a reasonable approximation after only 10 iterations
and converges to a solution not visually distinguishable from that found by Cholesky factorization within 1000 iterations.
Figure 16 of the sequel additionally shows that the amount of iterations is similar across length scales—in contrast to
Cholesky factorization, which will fail under sufficiently-large length scales due to ill-conditioning.

Input point cloud 1 iteration 10 iterations 100 iterations 1000 iterations

CholeskyStochastic Gradient Descent

Figure 13. SGD converges to a qualitatively comparable solution to that found by Cholesky factorization in a few thousand iterations.

Effect of amortization grid density. We investigate how the grid density used for amortizing the cross-covariance
function kf,v(x, x

′), using the procedure described previously in Appendix B, affects the posterior and reconstruction
quality. Figure 14 shows that using an N that is too small, for instance N = 5, results in poor performance with contain
strong artifacting. On the other hand, increasing N leads to higher-fidelity reconstructions with more high-frequency details.

Input point cloud

Mean

Variance

Figure 14. The size of the amortization grid determines the reconstruction’s high-frequency level of detail.

Runtime sensitivity to input and output size. Figure 15 shows how our algorithm’s wall-clock runtime scales with input
size—that is, with the number of observed data points.
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Figure 15. An illustration of our algorithm’s input and output sensitivity.
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Runtime independence of length scale. SPSR, due to only being able to evaluate the posterior on a finite element mesh,
couples the kernel length scale with the output density, and thus runtime as well. In this example, we attempt to match the
interpolation length scale between SPSR and our method as much as possible, given their different kernels. Figure 16 gives
a comparison, where each row has half the length scale compared to the row above. We observe in the first row that using
large length scales with SPSR leads to too much interpolation post-solve which produces blurry results. Our method instead
does not require any interpolation post-solve since by construction we can evaluate the posterior anywhere, leading to a
sharper reconstruction with larger length scales. Furthermore, in practice, SPSR’s runtime scales exponentially with the
(inverse) length scale, in the sense that dividing the length scale by 2 increases the runtime by roughly 2d. On the other
hand, our method’s runtime is empirically constant with respect to the length scale. For comparison, in this example the
amount of time to compute the mean—which is simply (a variant of) ordinary non-stochastic PSR—is 0.053, 0.54, and 9.1
seconds, respectively, for the three length scales considered, in increasing order.

SPSR This work (Chol.) This work (SGD)

Input

12.4 s

83.8 s

664 s

6.5  s

6.5  s

6.5  s

1.44 s

1.44 s

1.44 s

Length scale decreases

Figure 16. Our runtime is not sensitive to the kernel’s length scale, both with Cholesky and SGD.
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