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Abstract
Many tasks in geometry processing are modelled as variational problems solved numerically using the finite element method.
For solid shapes, this requires a volumetric discretization, such as a boundary conforming tetrahedral mesh. Unfortunately,
tetrahedral meshing remains an open challenge and existing methods either struggle to conform to complex boundary sur-
faces or require manual intervention to prevent failure. Rather than create a single volumetric mesh for the entire shape,
we advocate for solid geometry processing on deconstructed domains, where a large and complex shape is composed of
overlapping solid subdomains. As each smaller and simpler part is now easier to tetrahedralize, the question becomes how
to account for overlaps during problem modelling and how to couple solutions on each subdomain together algebraically.
We explore how and why previous coupling methods fail, and propose a method that couples solid domains only along
their boundary surfaces. We demonstrate the superiority of this method through empirical convergence tests and qualita-
tive applications to solid geometry processing on a variety of popular second-order and fourth-order partial differential
equations.
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1. Introduction

Many tasks in computer graphics and geometry processing can be
modelled mathematically as solutions to partial differential equa-
tions (PDEs) over a compact spatial domain. For example, shape-
aware scattered data interpolation can be modelled as a solution
to the Laplace equation (�u = 0). Smooth detail-preserving shape
deformations can be efficiently parametrized using solutions to a
bi-Laplace equation (�2u = 0). Even computation of geodesic dis-
tances (Figure 1) can be captured via iterative solutions to a Pois-
son equation (�u = f ). These applications — and many others
— rely on discretization to realize their solutions on the complex
shapes found throughout computer graphics. The most common dis-
cretization is via the finite element method (FEM) using piecewise-
linear functions defined over a simplicial mesh. For problems over

solid regions in R
3, this typically requires constructing a tetrahedral

mesh that fills the volume bounded by a given surface. Compared
to regular grids, unstructured tetrahedral meshes afford spatially
varying resolution and complex boundary surfaces — in theory, at
least.

In practice, constructing tetrahedral meshes is a fragile process.
While the application of linear FEM is often straightforward af-
ter posing a problem in the smooth setting, the actual creation
of a valid tetrahedral mesh inside a triangle mesh is often left to
an ad hoc patchwork of heuristics including manual intervention
and mesh repair. Existing automatic meshing methods fall short.
They either fail too often, create too poor quality elements or
approximate too loosely the input domain boundary, as shown in
Figure 2.
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Figure 1: A complex shape is constructed as the union of 32 solid components. Rather than resolving the mesh union geometrically and
struggling to tetrahedralize the result, we propose tetrahedralizing each smaller, simpler model independently. We introduce constraints to join
the volume meshes algebraically, enabling partial differential equation-based geometry processing (heat distances [CWW13] shown here).

Figure 2: TETGEN fails to tetrahedralize this microscope, even after
preprocessing the input using [ZGZJ16]. QUARTET successfully out-
puts a tet mesh, but thin parts are poorly approximated (inset) and
close features are merged (arrow).

We consider an interesting
class of shapes that are — at
least conceptually if not
literally — described as the
union of simpler domains
(see inset). The traditional
conforming tetrahedralization pipeline would proceed by first com-
puting the result of a surface mesh union operation and then attempt
to mesh the interior. However, even if the input triangle meshes are
‘clean’, the exact mesh boolean result may be host to a number of is-
sues that trip up available tetrahedralization heuristics: fine features,
small voids and poorly shaped elements (Figure 3). In general, the
exact result introduces many new vertices whose coordinates are
rational numbers. Naively rounding such vertices to floating-point
coordinates may introduce self-intersections, and efficient round-
ing while preventing intersections in 3D is still an open problem
[For97].

Figure 3: Even if all input meshes are ‘clean’ (e.g. four overlap-
ping geodesic spheres on left), their exact mesh-union may have
arbitrarily poor quality triangles. These in turn trip up conforming
Delaunay tet-meshers: e.g. TetGen [Si03] fails on this example.

In this paper, we propose an alternative to this error-prone
pipeline. We consider inputs as deconstructed domains, composed
as the union of any number of simpler shapes. We tetrahedralize
sub-domains independently with no requirement to share vertex po-
sitions or combinatorics. Sub-domains are treated democratically,
without a priority ordering or hierarchy. We then couple discrete
PDEs or variational problems defined on each domain algebraically.

This coupling requires care. The given PDE or variational prob-
lem must be adapted for overlapping domains to avoid bias or
double-counting in twice-covered regions. Via null-space analy-
sis, we show that naive equality constraint leads to locking, artificial
error that does not vanish under resolution refinement.

We borrow ideas from domain decomposition and immersed
boundary methods to derive a general-purpose boundary-only cou-
pling in the smooth setting and then demonstrate its effectiveness
for linear FEM discretizations of common problems in 1D, 2D and
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3D (e.g. Poisson equations). Domains are coupled with hard con-
straints resulting in a parameterless method. Further, we extend our
results to boundary-only higher order coupling for applications of
mixed FEM for fourth-order problems (e.g. bi-Laplace equation).

2. Related Work

Our goal is to improve the robustness of geometry processing that
requires solving PDEs on solid shapes.

PDE solvers in geometry processing Improving the accuracy, ro-
bustness and performance of solvers for geometry problems is a
core area of interest [BBK05, KFS13, Kaz15, DMZ*17, HDA17,
SPSH*17]. While we focus on robustness with respect to the input
representation, our work relates to these as an algebraic pre-process
or filter on the eventual linear system or optimization problem.
This is in contrast to geometric approaches to robustness such as
remeshing [BK04b, SRUL16, GJTP17] or enclosing a shape in a
cage [JMD*07, SVJ15]. The boundary element method avoids vol-
umetric meshing altogether (e.g. [JP99, DHB*16, SVB17]), how-
ever, also limits the class of problems that can be solved. Com-
pared to methods tailored to one application (e.g. character skinning
[BTST12]), our method applies to a general class of PDEs.

Constructive solid geometry Emerging technologies such as 3D
printing and virtual reality have ignited broader interest in geometric
modelling. The result is that we have a huge amount of geometric
data, but that data are rarely composed of a single, watertight, non-
self-intersecting, oriented manifold surface [ZJ16]. Instead, people
create using constructive solid geometry (CSG) tools like OPEN-
SCAD and TINKERCAD that happily allow overlapping simpler mod-
els to create a larger, more complex shape. Early digital CSG com-
plements this modelling paradigm with fast evaluation using implicit
functions (e.g. [WMW86]) and GPU-friendly rendering [GHF86].
While the complexity of available meshed surface geometry grows,
researchers have devised interesting and interactive ways to create
complex models using pre-existing detailed parts [GSP*06, CK10,
CKGK11].

Most volumetric solvers do not consider the upstream modelling
process and instead require a single volumetric mesh as input. This
puts a heavy burden on modelling tools to maintain a clean sur-
face geometry via mesh ‘surgery’ operations [SBSCO06, SS10a,
SS10b]. Despite recent progress on robust boolean operations for
triangle meshes [BF09, BGF15, ZGZJ16], the resulting meshes may
have arbitrarily poor aspect ratio (Figure 3) preventing or damaging
tetrahedralization. In contrast, we operate directly on the overlap-
ping sub-domain representation common to solid modelling.

Tetrahedral meshing Although our work is an effort to subvert
tetrahedral meshing and its issues, we still rely heavily on the
progress and open source software from this literature. The fun-
damental challenge at the core of tetrahedral meshing is the balance
between ensuring high-quality elements (see, e.g. [She02]) and con-
forming to a given input surface. While a complete meshing survey
is outside the scope of this paper, we identify issues and previous
works as they relate to our setting.

Figure 4: This seemingly innocuous union (left) causes the con-
forming Delaunay method TETGEN [Si03] to fail. Implicit or query-
based methods have trouble capturing fine structures (middle) with-
out resorting to high resolutions (right).

Conforming Delaunay tetrahedralization methods maintains the
input geometry (and combinatorics) exactly by inserting input ver-
tices and faces into a Delaunay triangulation and then improving
element quality via local operations and additional Steiner vertices
[CDS12]. In practice, the software TETGEN [Si03] implements many
state-of-the-art algorithms and heuristics. The success rate of TET-
GEN is not 100% (Figure 4), but it succeeds far more often when
inputs are smaller and simpler, without spatially close parts or small
triangles. We use TETGEN in most of our examples, but run it on
each sub-domain, rather than the complex, complete shape.

Alternatively, other meshing methods work by employing a back-
ground grid [LS07] or implicit representation of the input shape
[ACSYD05]. These methods ensure good quality elements by con-
struction, but struggle to closely approximate the input shape ge-
ometry — especially in the presence of sharp features. Doran et al.
[DCB13] provide an open source implementation, QUARTET and
while robust in the sense of successfully outputting a mesh, this
method will join together close features and fail to resolve thin parts
(Figure 2). In contrast to Cuilliere et al. [CFD12], we avoid comput-
ing a unified mesh and do not require matching or correspondence
between vertices or combinatorics of overlapping meshes.

Domain decomposition The idea of coupling solutions to PDEs
across overlapping domains is quite old [Sch70] and well studied.
The majority of previous methods for overset and non-matching
grids focus on domain decomposition for parallel, offline compu-
tation using iterative solvers [SBGG04]. Alternatively, immersed
boundary methods [Pes73] use similar constraints to couple the
simulation of one or many objects embedded in a background sim-
ulation. For example, coupling a floating elastic body to a fluid
simulation (e.g. [GSLF05]).

In contrast, our interest is in reducing the burden of tetrahedraliza-
tion while maintaining the complexity of shapes found in graphics
and geometry processing. We treat coupling as a hard constraint to
single linear system solved using modern, large sparse linear solvers
(e.g. [Dav06, AA00]). No sub-domain has preference over another.

English et al. [EQYF13] simulate water at varying resolutions
by allowing regular finite-difference grids to rigidly overlap. Their
method assigns priorities to grids and stitches higher priority grids
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along their boundaries into lower priority grids to solve a Poisson
equation. Similar so-called Chimera grids [Ben85] are found in
early fluid simulations on comparatively simple domains [BSD83,
Hen94, KKRC97, DMYN08]. Henshaw describes how boundary
values of one grid are interpolated using ghost points. This method
is applied to overlapping regular Cartesian or polar grids. Malgat
et al. [MGL*15] couple overlapping discretizations for elasticity
simulation via energy minimization. Their method requires a hier-
archical ordering.

Overset grid methods (e.g. [Nak99, LSLR01, BS15]) often as-
sume that the domain has been designed with an overlapping solver
in mind. High-resolution grids near important areas naturally have
well-defined and known priority over coarse background grids. In-
stead, we consider the case where sub-domain priorities are not
known and domains merely serve as an overlapping sub-division.
The resolution of a single grid may itself be adaptive.

Schwarz domain decomposition can be interpreted in the context
of discontinuous Galerkin finite element method or extended FEM
[Kau12], where sub-domains are interpreted as large, high-degree
elements and coupling is analogous to interface conditions. Edwards
and Bridson [EB15] propose such a solver for Poisson, elasticity and
bi-Laplace problems. Their overlapping sub-domains are extracted
from a unified grid of the entire domain.

3. Smooth Foundations

We first consider a PDE involving a smooth function u defined
over a volumetric (i.e. co-dimension zero) domain � ⊂ R

d with
appropriate boundary conditions applied to u on the boundary of
the domain ∂�. We focus specifically on elliptic PDEs resulting
from energy minimizations common in geometry processing. For
example, minimizing the squared gradient (i.e. Dirichlet energy)
minus a unit potential, subject to fixing the value of u to a known
function g on the boundary of the domain,

minu

∫
�

(
1
2 ‖∇u‖2 − u

)
dA (1)

subject to u(x) = g(x) ∀x ∈ ∂�, (2)

results in the second-order Poisson equation on the interior,

�u = 1 ∀x ∈ �. (3)

Suppose we are incapable of
measuring an energy directly
over all of the domain �,
but instead are only able to
measure energies over two
overlapping sub-domains �1,

�2 ⊂ R
d whose union comp-

oses the original domain �1 ∪ �2 = �. By replacing u with new u1

and u2 over each respective sub-domain, we can write the original
minimization problem in Equation (1), breaking the integral into
the non-overlapping parts in each sub-domain �1 \ �2 and �2 \ �1

and their intersection (�1 ∩ �2) and adding a pointwise equality

coupling constraint,

min
u1,u2

∫
�1\�2

(
1
2 ‖∇u1‖2 − u1

)
dA+ (4)

+ ∫
�2\�1

(
1
2 ‖∇u2‖2 − u2

)
dA+ (5)

+ 1
2

∫
�1∩�2

(
1
2 ‖∇u1‖2 − u1 + 1

2 ‖∇u2‖2 − u2

)
dA (6)

subject to u1(x) = g(x) ∀x ∈ ∂� ∩ ∂�1, (7)

and u2(x) = g(x) ∀x ∈ ∂� ∩ ∂�2, (8)

and u1(x) = u2(x) ∀x ∈ �1 ∩ �2. (9)

Advantage of working with energies The appearance of the factor
before the integrated energy in the intersection �1 ∩ �2 region (see
Equation (6)) would not be so obvious if we had worked with the
Poisson problem directly as a PDE (see Equation (3)). However,
viewed as variational problem, the necessity of the 1/2 is clear: we
should not double count the energy contributed in this region.

4. Discrete Locking

The deconstructed energy optimization problem in Equation (4) only
involves first derivatives and linear equality constraints. It is tempt-
ing to jump to a FEM discretization using piecewise-linear elements
for each sub-domain �1 and �2, e.g. hat functions (over polylines
for d = 1, triangle meshes for d = 2 and tetrahedral meshes in
d = 3)

ui(x) =
n∑

j=1

uijϕij (x), (10)

with interpolated values at the n vertices given as a vector ui ∈ R
n.

If the meshes over �1 and �2 have only and exactly coincident
vertices and compatible combinatorics in the intersection region
�1 ∩ �2, then we call them matching. In this special case, enforcing
the pointwise equality constraint in Equation (9) is equivalent to
merging the meshes. The solution search space is exactly as rich as
linear FEM over the merged mesh.

For meshes with vertices in general position, perfect coincidence
never happens. Pointwise equality immediately reduces the search
space to piecewise linear functions that exist mutually in both linear
FEM function spaces over the intersection �1 ∩ �2. In the general
non-matching case, the constraint reduces the search space dramat-
ically: only functions that take on a linear function over �1 ∩ �2

remain (see Figure 5, left).

This is an extreme case of what is known as locking in the FEM
literature [ZT00]. Locking is an artificial stiffening of system during
discretization. In our case, the constraints are so strict that only rather
boring functions remain. These functions can be arbitrarily far from
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Figure 5: The constraint space is unrelated to the energy. Con-
sider a simple reconstruction energy minu

∫
�1∪�2

(u − g)2 dA. Con-
straining all points in the overlap locks to a linear function; all
vertices look promising for saddle-shaped functions, but cannot
reproduce positive curvature functions; boundary vertices avoid
locking.

the desired solution and discretization refinement by adding more
(general position) vertices will not help (Figure 6).

4.1. Constraints at all vertices cause locking

One immediate strategy is to require equality only at mesh vertices.
This ties the values at one mesh’s vertices to the piecewise linearly
interpolated value on the other mesh via a linear equality constraint
and vice-versa, e.g.:

u1i =
n2∑

j=1
u2j ϕ2j (v1i) ∀i such that v1i ∈ �1 ∩ �2, (11)

u2j =
n1∑
i=1

u1iϕ1i(v2j ) ∀j such that v2j ∈ �2 ∩ �1, (12)

where vki ∈ R
d is the position of the ith vertex in the mesh over

sub-domain �k . The coefficients obtained by evaluating the hat
functions ϕ�j (vki) of the other mesh over sub-domain �� are simply
the barycentric coordinates of vki in the containing simplex (e.g.
tetrahedron for d = 3).

We can collect these constraints in matrix form

C
(

u1

u2

)
= 0, (13)

where C ∈ R
(m1+m2)×(n1+n2) is a sparse rectangular matrix, where

each row corresponds to one of the m1 vertices of the mesh over �1

lying in �2 or vice-versa.

These linear equality constraints are easy to implement in practice
(e.g. via the null space or Lagrange multiplier method). Unfortu-
nately, these constraints do not alleviate locking.

In R
1, constraining all vertices in the overlapping region �1 ∩ �2

is catastrophic. Intuitively, if a segment of the mesh over �1 overlaps
with a segment of the mesh over �2, then both pairs of vertices will
have to lie on the same line. In the worst case, an alternating order
of vertices from �1 and �2 creates a domino effect, and the entire
intersection region locks to the same linear function (Figure 7).

It is tempting to extrapolate that these constraints will always re-
sult in pointwise locking, but in higher dimensions (d > 1), locking
from vertex constraints is more nuanced. We observe in Figure 5
that the constraint space created by coupling all vertices struggles to
reproduce a round parabolic function and more easily reproduces a
saddle-shaped hyperbolic function. Indeed, imposing this constraint
when solving a Laplace equation (saddle-shaped solution), we see
significantly better convergence with respect to mesh resolution than
when solving a parabolic Poisson equation (Figure 8).

This is not a coincidence. The constraint matrix C in Equation (13)
satisfies many desired properties (constant precision, linear preci-
sion, the maximum principle and local support; see [WMKG07]) of
a discrete Laplacian on the ‘joint mesh’ over �1 ∩ �2 created by
connecting each vertex of �1 to the vertices of its containing sim-
plex containing in �2 and vice-versa. Performing eigen analysis on
C reveals that it responds as a discrete operator strikingly similarly
to the FEM discrete (cotangent) Laplacian (Figure 9). Because of
this relationship, we call the artificial stiffening due to constraining
all overlapping vertices harmonic locking.

We will defer our discussion of attempting to soften this equality
constraint to Section 7 and instead return to the smooth setting to
derive a locking-free solution from first principles.

5. Boundary-Only Coupling

The root of the locking troubles is the pointwise equality constraint
over the overlapping region �1 ∩ �2 in Equation (9). Surely cou-
pling is crucial. If we remove this constraint entirely, then u1 and u2

will solve independent Poisson equations, subject to emergent nat-
ural boundary conditions (in this case, ∇u · n = 0) on the overlap
boundary ∂(�1 ∩ �2). In other words, these zero normal derivative
boundary conditions uniquely determine u1 and u2.

The fact that minimizers of our energy in Equation (1) are
uniquely determined by boundary conditions can be spun to play
in our favour when searching for non-locking coupling constraints.

Figure 6: Left-to-right: the Poisson solution in 1D is a simple parabola, easily approximated using linear finite element method. If the discrete
domain is given as two overlapping meshes (red and yellow), then enforcing equality at all vertices in the overlap results in the solution
locking to a linear function. This problem does not go away with mesh refinement. Coupling the meshes only at the sub-domain boundary
(purple and green) alleviates locking, and converges with refinement.

c© 2018 The Authors
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Figure 7: Locking occurs at any scale and can be understand as a ‘Domino effect’ when enforcing constraints one-by-one. In 1D, consecutive
constraints force the solution to a line: eventually, the entire overlapping region must be a single line.

h
h

h

h

h

Figure 8: Constraining all vertices in the overlap between two con-
centric annuli matches the convergence rate of our boundary-only
constraints for �z = 0 (left). However, constraining all does not
converge for �z = 1 (right), while boundary only maintains con-
vergence. For reference: a non-overlapping, single mesh converges.

Concretely, we will now show that it is sufficient to restrict the
pointwise equality constraints from the entire intersection region
�1 ∩ �2 in Equation (9) to only its boundary ∂(�1 ∩ �2):

u1(x) = u2(x) ∀x ∈ ∂(�1 ∩ �2). (14)

We must show that minimizing the deconstructed energy in
Equation (4) over u1 and u2 with this constraint instead of Equa-
tion (9) remains equivalent to the minimization over u in Equa-
tion (1).

Assume that u1 and u2 are minimizers of Equation (4) satis-
fying u1 = u2|�1∩�2 , then by uniqueness of energy minimizers
and equivalence with the energy in Equation (1), u = u1|�1 and
u = u2|�2 . We must show that minimizing Equation (4) implies
that u1 = u2|�1∩�2 .

Given minimizers u1 and u2 of Equation (4), let us define
u1 = u2 := h|∂(�1∩�2). It does not matter that we do not explicitly
know the value of h. It is enough that it is well defined implicitly by
solving the problem in Equation (4) subject to Equation (14). Since
the minimizers u1 and u2 satisfy the Dirichlet conditions on their
respective boundaries (Equations (7) and (8)), we can add the fol-
lowing constraints to Equation (4) without changing the minimum:

u1(x) = u2(x) = h(x) ∀x ∈ ∂(�1 ∩ �2). (15)

Minimizers to our quadratic energy are uniquely determined by the
values on the boundary of the domain, so we can isolate the problem

discs

discs

Figure 9: Eigen modes of the constraint matrix built from fixing
all vertices of two overlapping, non-matching disc meshes resemble
those of the discrete Laplacian. More irregular meshing produces
less smooth modes.

for the overlapping region �1 ∩ �2, for example:

min
u1

1

2

∫
�1∩�2

1

2
‖∇u1‖2 − u1 dA (16)

subject to u1(x) = h(x) ∀x ∈ ∂(�1 ∩ �2), (17)

whose optimal argument is identical to the analogous problem re-
placing u1 with u2, thus implying that the two functions agree on
the overlapping region: u1 = u2|�1∩�2 .

Schwarz noticed this over a century ago [Sch70]. Since then, it
has been exploited for domain decomposition for parallelization and
memory decoupling for iterative solvers discussed in Section 2.

Analogous to the enforcement of Dirichlet boundary conditions,
in the discrete linear FEM setting, we constrain only boundary
vertices of �1 lying inside the other domain �2 or vice-versa:

u1i =
n2∑

j=1

u2j ϕ2j (v1i) ∀i such that v1i ∈ ∂�1 ∩ �2, (18)

u2j =
n1∑
i=1

u1iϕ1i(v2j ) ∀j such that v2j ∈ ∂�2 ∩ �1. (19)

These constraints are a subset of the rows of C in Equation (11),
and we call this much smaller matrix A ∈ R

(b1+b2)×(n1+n2), where
the mesh of �i has bi overlap-boundary vertices.

Not only does fixing the boundary result in a smaller num-
ber of constraints and thus typically a better conditioned system,

c© 2018 The Authors
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h

h

Figure 10: Constraining all vertices between two concentric spher-
ical shells (‘3D annuli’; cut view in middle) does not appear to
converge for the Poisson equation �u = 1 (right), while bound-
ary only exhibits similar convergence to a non-overlapping single
mesh.

but also the discrete approximations are free of locking arte-
facts. We see this immediately in the 1D example in Figure 6.
The boundary constraints do not show up visible in the con-
straint space when reproducing hyperbolic or parabolic functions
Figure 5. In Figures 8 and 10, convergence with respect to mesh
resolution for second-order problems roughly matches that of using
a single unified mesh. Recall that we are purposely avoiding creating
such a unified mesh, especially in R

3, where mesh surgery and likely
manual intervention and parameter tuning would be necessary. In-
stead, complex shapes can be created by overlapping many solid sub-
domains and coupling solutions using our proposed boundary-only
constraints.

5.1. Multiple overlapping sub-domains

In general, a complex shape may be composed of the union of K > 1
sub-domains:

� =
K⋃

i=1

�i. (20)

All of our derivations so far for K = 2 extend easily to K > 2. Our
deconstructed energy has the form

∑
i=1

∫
�

1∑K

j=1 χj

(
1

2
‖∇ui‖2 − ui

)
dA, (21)

where χj is the characteristic function of �j (i.e. χj (x) = 1 for
x ∈ �j and = 0 otherwise). We defer the implementation details
and matrix construction to Appendix A.

Many problems in geometry processing are slight variations
on the minimization of this energy. For example, implicit time-
integrations of the wave equation replace the unit potential with
acceleration, while the heat equation replaces this with a tem-
perature field [SCV14]. While these changes to the basic Pois-
son solver here are nominal and left to the reader, increasing the
differential order of the energy requires specific attention (see Sec-
tion 6). Before this, we discuss two important considerations during
discretization.

Figure 11: Quadrature for estimating partial volume at boundary
elements can increase convergence, with diminishing returns.

5.2. Quadrature

When discretizing the integral in Equation (21), we must approxi-
mate the partial volume of tetrahedra straddling the overlap bound-
aries. We compared various strategies. We specifically avoid com-
puting this analytically or splitting elements as this is tantamount
to the mesh boolean problem and would inherit its numerical chal-
lenges and robustness issues. Instead, we observe that numerical
quadrature or Monte Carlo sampling improves accuracy and indeed
helps convergence, albeit with diminishing returns (Figure 11). Ap-
proximating this integral is simpler than remeshing. We avoid com-
puting exact intersections or new combinatorics.

Unless otherwise noted, we simply treat an element as fractionally
inside or outside another mesh by averaging the number of domains
each corner position lies within (i.e. first-order quadrature).

5.2.1. Constraint thinning

The simplest way to extend our boundary coupling constraints for
K = 2 in Equation (18) is to consider all possible pairs of the K
sub-domains:

uai =
nb∑

j=1

ubjϕbj (vai) ∀i, a �= b s.t. vai ∈ ∂�a ∩ �b. (22)

For shapes where many sub-domains overlap on the same region,
a boundary vertex of one sub-domain may show up in > 1 other
sub-domains, resulting in equality constraints for each. This unnec-
essarily reduces the search space and tarnishes the solution near the
overlap boundary (Figure 12). Much like in [PTSZ11], the transitiv-
ity of the equality above makes it so that we only need one coupling
constraint for each boundary vertex. We cannot be satisfied with
finding any maximal spanning tree of constraints since that may
still concentrate constraints near a single vertex.

We experimented with various heuristics for picking which con-
straint to keep for each fixed vertex. Removing all but the first
constraint creates a slight bias to the arbitrary ordering of the do-
mains. Selecting a random constraint works reasonably well, but still
results in many vertices involved in multiple constraints. Averaging
or softening constraints also helps, but increases complexity.

c© 2018 The Authors
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Figure 12: Boundary coupling across all sub-domain pairs leads
to messy locking near the overlap boundary (6001 constraints). In-
stead, our heuristic keeps exactly one constraint per overlap bound-
ary vertex (3893 constraints).

Figure 13: Pairwise constraints on multiple overlapping sub-
domains lead to redundancy, which we remove via constraint thin-
ning. The highlighted vertex of the blue mesh in this didactic exam-
ple is interpolated by elements in the green, red and purple meshes,
when only one of these would be necessary.

Ideally, we would like to maximize the total number of vertices
involved in the constraints (to diffuse the constraints) while still en-
suring exactly one constraint per overlap-boundary vertex. Viewing
the constraint matrix A as graph, this selection is a form of vertex
cover problem.

We approximate the maximum cover by scoring vertices based
on how many constraints they are involved in; similarly, we score
each constraint by averaging the scores of the vertices involved.
For each vertex involved in more than one constraint, we keep the
least saturated (lowest scored) constraint only and remove the rest, as
shown in Figure 13. Thinning the constraints in this way significantly
helps avoid issues near boundaries when multiple shapes overlap
(Figure 12). The decrease in the number of constraints also reduces
the linear system size, albeit with marginal affect on performance.

6. Higher Order Partial Differential Equations

Methods in geometry processing often go beyond second-order
PDEs to model problems requiring smoother continuity at con-
straints [BK04a, SLCO*04, JTSZ10, SGWJ17] or higher order
control [FSH11, JC08] (Figure 14). Returning briefly to the smooth
setting, we focus on the squared Laplacian energy to extend our
consideration of deconstructed domains to higher order PDEs:

min
u

∫
�

(�u)2 dA, (23)

resulting in the fourth-order bi-Harmonic equation:

�2u(x) = 0 ∀x ∈ �. (24)

The second derivatives of this energy are not immediately dis-
cretizable using linear FEM, so we introduce an auxiliary function
z and solve the equivalent constrained minimization problem:

min
u,z

∫
�

z2 dA, (25)

subject to �u(x) = z(x) ∀x ∈ �. (26)

Applying the Lagrange multiplier method and Green’s identity, this
transforms into a saddle problem involving only first derivatives:

saddle
u,z,μ

∫
�

(
z2 + ∇μ · ∇u + μz

)
dA + boundary terms (27)

where μ is the Lagrange multiplier function and we defer discussion
of boundary terms to previous works (e.g. [SGWJ17]).

We now have a problem involving only first derivatives which
we can discretize using multiple sets of linear finite elements (i.e.
mixed FEM). After factoring out μ, the resulting system has the
symmetric matrix form of a KKT system:

(
0 LT

L −M

) (
u
z

)
=

(
0
0

)
. (28)

6.1. Unsuccessful low-order boundary-only coupling

While the second-order Poisson equation requires one set of bound-
ary conditions (e.g. fixed values or fixed normal derivatives), the
fourth-order bi-Laplace equation in Equation (24) requires two sets
of boundary conditions to identify a unique solution. For example,
we can fix both the value and the normal derivative along the bound-
ary ∂� (i.e. fix low-order quantities). If we explicitly fix only the
value along the boundary when minimizing the squared Laplacian
energy, then natural boundary conditions will emerge to ensure
uniqueness (cf. [SGWJ17]). This also occurs in the mixed FEM
discretization. Fixing only the value along the overlapping region
for two sub-domains �1 ∩ �2 couples the function values together,
but produces a noticeable ‘kink’ (Figure 15). We are witnessing
the natural boundary conditions on one sub-domain’s function (in
this case, �u = 0) disagreeing with the derivatives of other sub-
domain’s function: i.e. in general, �u1 = 0 �= �u2 on ∂�1 ∩ �2.

To take advantage of the same uniqueness properties used in
Section 5, we must ensure that each function is sufficiently con-
strained with boundary conditions. One idea would be to trivially
extend our boundary-only coupling by fixing the value and normal
derivative along the overlapping boundary:

u1(x) = u2(x) ∀x ∈ ∂(�1 ∩ �2), (29)

∇u1(x) · n(x) = ∇u2(x) · n(x) ∀x ∈ ∂(�1 ∩ �2), (30)

where n(x) is the normal vector pointing outward from the overlap-
ping region �1 ∩ �2. In the smooth setting, we can quickly confirm
that this is equivalent to the original energy minimization problem
in Equation (23) following the same reasoning in Section 5.

c© 2018 The Authors
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



572 S. Sellán et al. / Solid Geometry Processing on Deconstructed Domains

Figure 14: Updating the shape with another stack of wings does not require updating a unified tet mesh. Instead, new components are
tet-meshed independently and added to the system algebraically.

Figure 15: Enforcing equality at all vertices of two overlap domains results in locking (red and yellow). For higher order PDEs, coupling by
value alone at overlap boundaries avoids extreme locking, but resolution refinement reveals non-smoothnesses (pinks). Attempting to enforce
derivative continuity by coupling values and first derivatives results in local locking and non-smoothness persists (blues). We couple primary
values and auxiliary values constrained to the Laplacian (u′′ in 1D) at sub-domain boundaries: the solution is smooth (purple and green).

These low-order coupling constraints are simple to discretize us-
ing linear FEM, but unfortunately do not lead to a convergent system.
Fixing directional derivatives across the two functions leads to har-
monic locking locally (the one-ring of vertices at the overlapping
region boundary). This region shrinks with mesh refinement, but
the problem persists: effectively, the solution locks so that natural
boundary conditions emerge, albeit one-ring into the overlapping
domain (Figure 15).

6.2. Higher order boundary-only coupling

Fortunately, the bi-Laplace equation in Equation (24) is also
uniquely determined by other combinations of boundary conditions.
Such combinations of low- and high-order conditions sometimes
appear directly during problem modelling (e.g. [JC08]). The intro-
duction of the auxiliary variable z = ∇u in Equation (25) makes the
choice of fixing the value and the Laplacian of u along the boundary
particularly easy to describe:

u1(x) = u2(x) ∀x ∈ ∂(�1 ∩ �2), (31)

z1(x) = z2(x) ∀x ∈ ∂(�1 ∩ �2). (32)

During discretization using mixed FEM, we add these constraints
to the Lagrangian’s KKT system in Equation (28) directly, resulting
in a larger KKT system:

⎛
⎜⎜⎝

0 LT AT 0
L −M 0 AT

A 0 0 0
0 A 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

u
z
λu

λz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ , (33)

h

h

h

Figure 16: The behaviour of our different sets of constraints for the
bi-Laplace equation �2u = 0 mirrors that of the Poisson equation
solver shown previously.

where λu, λZ ∈ R
n1+n2 are vectors of Lagrange multipliers enforc-

ing boundary coupling constraints on u and z, respectively, and A is
the linear constraint matrix. While the constraints on the values in
u are straightforward, the constraints on the auxiliary values z may
be interpreted as acting orthogonally to the original mixed FEM
constraint so that Mz = Lu.

This discretization avoids the ‘kink’ of the low-order boundary
coupling in Section 6.1 (Figure 15). We see convergence with respect
to mesh refinement (Figure 16).

A remaining issue with our discretization is that mixed FEM re-
sults in a saddle problem, rather than a standard convex, linearly
constrained quadratic energy minimization. However, this is over-
come by rearranging terms algebraically (see Appendix B).
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Table 1: Performance timings.

Shape #Tets K Build A Problem Solve

Android 113 118 33 0.56 s BBW 9.06 s
Bug 159 533 16 0.47 s MSBK 21.73 s
Jet 226 548 14 0.48 s Eigen 1.91 s
Bi-plane 321 237 23 1.05 s BBW 37.61 s
Microscope 348 099 24 1.09 s Heat 4.84 s
Pistol 412 798 18 1.08 s Wave 4.70 s
Alien 682 399 32 2.57 s Geodesic 13.45 s

Notes: #Tets is the total number of tetrahedra across the Koverlapping com-
ponents. We list the runtime for constructing the constraints matrix (Build
A) and then conducting the resulting constrained (example-dependent) op-
timization (Solve).

7. Experiments and Results

We have implemented our method using MATLAB using finite ele-
ment operators from GPTOOLBOX [J*16] and point location routines
from LIBIGL [JP*18]. We use TETGEN [Si03] to mesh the sub-domains
in all examples except the sphere and 3D annulus test cases, for
which we use QUARTET [DCB13]. We use TRIANGLE [She96] for 2D
meshing. On our MacBook Pro with a 3.5GHz Intel Core i7 with
16 GB of memory, the performance bottleneck is always the lin-
ear solve (MATLAB’s ldl), eigen decomposition (MATLAB’s eigs)
or quadratic programming optimization (MOSEK’s quadprog). For
completeness, we list runtime performance in Table 1.

While our main focus is to improve robustness, we observe sys-
tematically predictable trends in the runtime performance. For ex-
ample, consider solving a Poisson equation on a single mesh of
a solid domain with O(n3) vertices. For a typical FEM-quality
mesh, the performance will be determined by performing a lin-
ear system solve on a sparse matrix with O(n3) non-zeros. In the
absence of other constraints, this matrix will be positive definite,
affording Cholesky decomposition. For our deconstruction of the
same domain into K overlapping components and O(n3) total ver-
tices across all meshes, we build the boundary-only constraints
matrix A which (under mild assumptions) will contain O(Kn2)
non-zeros. In contrast, fixing all vertices in the overlapping region
would require O(Kn3) non-zeros. Using, e.g. the Lagrange mul-
tiplier method to enforce our constraints results in an indefinite
sparse system matrix with O(n3 + Kn2) non-zeros (solved, e.g.
with LDLT-decomposition). In practice, K is often quite small and
the difference in performance between solving on a single mesh and
a deconstructed domain boils down to the performance of sparse
Cholesky versus sparse LDLT-decomposition — with the important
caveat that solving on a single mesh is often impossible without
user-intervention. In Figure 17, we found an example where mesh-
union followed by tetrahedralization does create a useable mesh:
Cholesky for the single mesh is roughly 3.7× faster than LDLT
on our constrained system. As future work, it would be interest-
ing to further exploit our deconstructed domains for performance
acceleration and parallelization (see, e.g. [LSLR01]).

An alternative to our boundary-only hard constraints would be to
enforce weak constraints at all vertices in the overlapping regions.
In Figure 18, we show that, yes, weak constraints can work, but one

Figure 17: Traditional mesh-union then tetrahedralization suc-
ceeds on this example, enabling an ad hoc performance compar-
ison. System matrices for solving the Poisson equation require simi-
lar memory; however, our MATLAB implementation uses LDLT on
our resulting Lagrangian: about 3.7× slower than Cholesky, here.

Figure 18: Weak constraints are sensitive to the penalty weight.
There exists a good value (here, ω = 0.1), but finding this is non-
trivial and problem dependent. An incorrect choice can be disas-
trous. Our boundary coupling is parameterless and achieves low
error.

must choose the penalty weight carefully. In this experiment, if the
penalty is too weak, the solutions on different sub-domains become
decoupled; too strong the solution locks up just as much as the strong
constraints. This is not a situation where a different constraint han-
dler will help. For example, the augmented Lagrangian or alternating
direction method of multipliers methods are numerical techniques
for effectively driving the penalty weight to infinity, but in this limit
the solution is simply the locked up solution. Meanwhile, the ‘cor-
rect’ penalty weight will depend on the mesh resolution, constraint
constellation and solution. This may vary spatially: a good weight
here may cause locking over there.

We designed 2D and 3D convergence test scenarios (Figures 8
and 10). We compare L∞ error to an analytic solution. In Figure 11,
we use the same setup to test partial area estimation. For 10-point
quadrature, we use the symmetric rules of Zhang et al. [ZCL09].

For irregular tetrahedral meshes, elements overlapping the bound-
ary of another domain typically contain multiple boundary vertices
of that domain and thus participate in multiple constraints (even in
the simple overlapping 3D annuli in Figure 10, involved tetrahe-
dra contain on average 3.18 boundary vertices). For more complex
shapes, the interior boundaries inherit the irregularity of the over-
lapping parts. Our method does not smooth or alter these potentially
irregular boundaries (Figure 1).
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Figure 19: Our general method can be applied to a variety of problems involving discrete differential geometry including eigen analysis.

Figure 20: Our method is accurate enough to repetitive solve for
dynamics, as seen in this simulation of a shockwave propagating
from one solid component into the rest.

We demonstrate the versatility of our constraints by expanding
beyond the Laplace (�u = 0) and Poisson equations (�u = f ) to
other equations found in solid geometry processing. In Figure 2, we
demonstrate our boundary-only constraints for solving an implicit
time step of the heat equation (u − δt�u = u0). In Figure 1, we
solve the same heat equation for u and then the Poisson equation
�ϕ = −�u/|∇u| to approximate interior distances ϕ using the
method of Crane et al. [CWW13]. In Figure 20, we visualize shock
wave through a pistol composed of many overlapping components
(u − δt2�u = u0 + δtu̇0).

In Figure 19, we use our boundary-only constraints to conduct a
Laplacian modal analysis on a deconstructed domain. We enforce
constraints during eigen decomposition via the null space method
[Gol73], but replace the QR decomposition with the sparser LUQ
decomposition. In Figure 21, we quantitatively validate our method
using the Laplacian spectrum. The smallest 100 eigenvalues using
our method match the theoretical groundtruth for a sphere domain
(and those computed using standard linear FEM on a single mesh).
To extend this comparison to a more complex example where theo-
retical values are not known, we found a shape where mesh-union
followed by tetrahedralization succeeds. Compared to second-order
finite differences over a high-resolution voxelization, our spectrum
better matches the spectrum found using a single unified mesh.
Higher order elements — known to improve spectral convergence
[RBG*09] — could be used in either method, but do not affect our
main contribution of setting up constraints.

By rearranging our higher order coupling for bi-Laplacian prob-
lems in Section 6.2 into a convex energy minimization (see
Appendix B), we can immediately implement advanced methods in-
volving L1 sparsity inducing norms for shape descriptors, such as the
multiscale pre-biharmonic kernels [Rus11] in Figure 22 and inequal-
ity constraints such as the bounded biharmonic weights [JBPS11],
used for real-time skinning deformations in Figure 23. In Figure 14,
we demonstrate the robustness of our method to large-scale geom-
etry changes. Wings are added to the plane simply by overlapping

Figure 21: The spectral behaviour of our Laplacian operator con-
structed using solely the information from the primitive’s meshes
(green lines) approaches the analytical spectra (left) in the same
way as that obtained from traditional FEM on a unified mesh of the
domain (left and right, blue line).

Figure 22: Our high-order boundary-coupling constraints com-
plement advanced biharmonic energy-minimization methods and
additional constraints such as L1 sparsity.

new solid components: we only need to tet-mesh the new compo-
nents and add their linear constraints to the system. In the classic
geometry processing pipeline, we would need to invoke mesh union
and fragile global tet-meshing algorithms. Our method avoids this.

8. Limitations and Future Work

We make a heavy assumption that the input domain is or can be de-
constructed into simple tetrahedralizable sub-domains. While many
models are originally created using CSG operations, often only the
(typically poor triangle-quality) mesh-boolean result is available
when it comes time to solve a volumetric PDE. Therefore, we ad-
vocate to retain these simpler domains and the construction tree
rather than preemptively resolving the mesh-boolean. Recent devel-
opments on obtaining the CSG tree from a given shape via reverse
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Figure 23: Minimizing the squared Laplacian subject to bound con-
straints produces automatic deformation bases: our method enables
this over deconstructed domains.

h

h

Figure 24: Our method can be generalized to deal with other 2D
set operations, such as intersections and substractions.

engineering [DIP*18] are promising towards reducing the severity
of this limitation.

Nonetheless, our tetrahedralizers, TETGEN [Si03] and QUARTET

[DCB13], still occasionally fail even on simpler sub-domains. To
mitigate this, we can pre-process problematic sub-domains on a
case-by-case basis using MESHFIX [Att10] and generalized wind-
ing numbers [BDS*18]. Alternatively, one could use the recently
published TETWILD [HZG*18] directly on the primitive shapes.

In this paper, we consider volumetric unions of polyhedral sub-
domains. Other domains such as those modelled using metaball im-
plicits [WMW86] or reconstructed from unstructured point clouds
(e.g. [KBH06]) are not immediately suitable for our method. It is ex-
citing to consider automatic methods for converting such domains
into unions of simpler primitives, perhaps with inspiration from
advances in approximate convex decomposition [AGCO13].

While all examples presented in this paper deal exclusively with
unions of different shapes, one can conceive of certain variations
that would make our method valid for all CSG operations, such as
intersections or differences. We have promising initial results for
intersecting two-domains in 2D (Figure 24) and are working an
extension to full 3D CSG trees.
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Appendix A: Deconstructed Domains Solver

This appendix provides a step-by-step construction of the discrete
solver for deconstructed domains. Without loss of generality, let us
assume 3D domains (d = 3). The input to our method is a set of K
overlapping, embedded, manifold tetrahedral meshes with vertices
{V1, . . . , VK} so that Vi ∈ R

ni×3 contains the positions of the ith
sub-domain’s ni vertices in its rows and list of tetrahedral indices
{T1, . . . , TK}, where the row-indices into Vi of the ith sub-domain’s
ti tetrahedra appear as rows Ti ∈ [1, . . . , ni]ti×4.

We first build the constraint matrix A ∈ R
(b1+···+bK )×(n1+···+nK ),

where bi are the number of boundary vertices of the ith mesh lying
inside a tetrahedron of any other mesh.

Next, we build the sparse discrete gradient matrix Gi ∈ R
3ti×ni

for each domain and compute adjusted volumes for each tetrahedron
ai ∈ R

ti (accounting for the 1/
∑K

j=1 χj term in Equation (21), see
Section 5.2).

From these, we can construct a quadratic coefficients matrix (i.e.
discrete Laplacian) Li ∈ R

ni×ni for each domain:

Li = GT
i diag (ai) Gi , (A.1)

where diag(x) for a vector x ∈ R
n creates n × n matrix with x

along the diagonal. We concatenate the contributions from each sub-
domain into a monolithic Laplacian Li ∈ R

(n1+···+nK )×(n1+···+nK ),

L = blkdiag (L1, . . . , LK ) , (A.2)

where blkdiag(A, B, . . .) creates a block diagonal matrix from
matrices A, B, . . .

Using the adjusted tetrahedral volumes in ai , we build a ‘barycen-
tric’ lumped diagonal mass matrix for each mesh Mi ∈ R

ni×ni and
stack these as well to create the mass matrix of the entire system
M ∈ R

(n1+···+nK )×(n1+···+nK ),

(Mi)jj =
∑

k∈N(j )

1

4
(ai)k (A.3)

M = blkdiag (M1, . . . , MK ) , (A.4)
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where N (j ) are the tetrahedra incident on vertex j . Further accuracy
could possibly be achieved by using a hybrid ‘Voronoi’ mass matrix
[MDSB03, JTSZ10].

Finally, we define u ∈ R
(n1+···+nK ) as the vertically stacked vectors

of unknown per-vertex values across the K sub-domain meshes.

We may now pose the discretization of the energy minimization
problem in Equations (21) and (22) using a standard matrix form:

min
u

uTLu − uTM1 (A.5)

subject to uij = g(vij ) ∀vij ∈ ∂� ∩ �i (A.6)

and Au = 0, (A.7)

where 1 and 0 are vectors ones and zeros, respectively. Vertices
receiving boundary conditions or constraints are identified combi-
natorially and located inside other meshes efficiently using a spatial
acceleration data structure (e.g. we use LIBIGL’s AABB tree [JP*18]),
and then thinned by removing rows according to our approximate
max-cover criteria (see Section 5.2.1). We use the MATLAB or MOSEK

quadratic programming solvers to find an optimal u.

Appendix B: Rearrangement into Quadratic Minimization

A remaining issue with our discretization is that mixed FEM re-
sults in a saddle problem, rather than a standard convex, linearly
constrained quadratic energy minimization. This means in practice
we cannot send the system in Equation (33) to a standard quadratic
programming solvers because the top-left sub-block

(
0 LT

L −M

)
(B.1)

is not positive semi-definite. However, we can resolve this by factor-
ing out z = M−1(Lu + ATλz) resulting in the smaller KKT system:

⎛
⎝LTM−1L LM−1AT AT

AM−1LT AM−1AT 0
A 0 0

⎞
⎠

⎛
⎝ u

λz

λu

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ , (B.2)

where the top-left 2 × 2 sub-block is now positive semi-definite.
This system arrives as the Euler–Lagrange equation for the con-
strained convex quadratic minimization problem:

min
u,λz

‖M−1/2 (Lu + ATλz)‖2 (B.3)

subject to Au = 0. (B.4)

To avoid inverting the mass matrix and improve the conditioning
of the objective term, we introduce another auxiliary variable y ∈
R

n1+n2 , arriving at the final constrained problem in standard form:

min
u,λz,y

‖y‖2 (B.5)

subject to Au = 0, (B.6)

and Lu + ATλz = M
1/2 y. (B.7)
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