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Figure 1: We use a neural network to quantify the reconstruction uncertainty in Poisson Surface Reconstruction (center left),
allowing us to efficiently select next sensor positions (center right) and update the reconstruction upon capturing data (right).

ABSTRACT
Reconstructing a surface from a point cloud is an underdetermined

problem. We use a neural network to study and quantify this re-

construction uncertainty under a Poisson smoothness prior. Our

algorithm addresses the main limitations of existing work and can

be fully integrated into the 3D scanning pipeline, from obtaining an

initial reconstruction to deciding on the next best sensor position

and updating the reconstruction upon capturing more data.
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• Computing methodologies → Point-based models; 3D imag-
ing; Active vision; Uncertainty quantification.
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1 INTRODUCTION
Surface reconstruction is the process of transforming a discrete set

of points in space (a common format for captured 3D geometry)

into a complete two-dimensional manifold for use in downstream

scientific applications. Given the fundamentally underdetermined

nature of the problem, algorithms must rely on priors to decide on

an output surface.

Absent task-specific knowledge, the predominant geometry pro-

cessing algorithm for surface reconstruction is Poisson Surface Re-
construction (PSR) [Kazhdan et al. 2006]. PSR encourages smooth-

ness in the reconstruction through a Partial Differential Equation

(PDE) whose solution can be computed efficiently and robustly.

Drawing inspiration from it, Dai and Nießner [2022] recently in-

troduced a neural approximation of PSR, which sidesteps the PDE

perspective on the problem, achieving some performance gains at

the cost of losing theoretical guarantees (see Figure 4), overfitting

(see Figure 3) and additional requirements (e.g., sensor positioning).
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Figure 2: We use neural networks to parametrize the stochas-
tic implicit function describing the reconstructed surface.
The mean is a simple five-layered MLP while the covariance
includes a SoftPlus (SP) pass and an averaging step to enforce
positiveness and symmetry, respectively.
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Figure 3: Unlike the Poisson-inspired model by Dai and Nießner [2022], we propose using a neural network to solve the Poisson
equation in Poisson Surface Reconstruction, avoiding overfitting in sparsely sampled point clouds. Additionally, we provide a
full statistical formalism, including variances (bottom right).

Statistically, PSR generates the most probable reconstruction

based on the selected prior. This choice inherently defines an entire

posterior distribution in the space of possible reconstructions. While

Stochastic PSR [Sellán and Jacobson 2022] computes this distribu-

tion for the first time in the context of PSR, it demands a complex

discretization scheme and relies on multiple approximations to

achieve computational tractability.

We build on the work by Sellán and Jacobson [2022] and intro-

duce a neural formulation of Stochastic PSR that provides a full

statistical formalism of the reconstruction process while avoiding

overfitting and requiring no additional sensor information. Unlike

Sellán and Jacobson [2022], we parametrize the mean and covari-

ance of the implicit field describing the reconstructed surface using

a neural network (see Figure 2), which we optimize using gradient-

based optimization on losses derived from the variational version

of the Poisson equation. Our neural formulation also allows us to

extend this stochastic perspective beyond the original PSR and into

Screened PSR [Kazhdan and Hoppe 2013].

We showcase the power of our algorithm by showing its per-

formance in a breadth of applications made possible by our novel

neural perspective. In particular, we show how one can fully inte-

grate our algorithm in the 3D scanning pipeline, from obtaining an

initial reconstruction to defining a differential camera score that can

guide the choice of the next best scanning position and efficiently

updating the previous reconstruction (see Figure 1) by fine-tuning

our network with additional data. We also explore promising av-

enues for futurework, like latent space generalization over scanning

positions for a given object or over a space of objects.

2 RELATEDWORK
2.1 Surface reconstruction
Three-dimensional geometry is often captured by recording the dis-

tance from a sensor or depth camera to a real-world object [Özyeşil

et al. 2017; Raj et al. 2020]. Combining the information from many

sensors allows us to represent the raw captured geometry as a

discrete set of points in space or point cloud. It is often possible

to use properties about the sensor positioning or heuristics based

on global or local cloud attributes [Hoppe et al. 1992; König and

Gumhold 2009; Metzer et al. 2021; Schertler et al. 2017] to equip

every point with a normal direction, allow for the slightly more

complete representation of an oriented point cloud.

Despite their ubiquitousness, (oriented) point clouds are a fun-

damentally underdetermined surface representation: by specifying

only a discrete set of points in space through which a surface passes,

it describes a theoretically infinite number of possible surfaces. Sur-
face Reconstruction algorithms (see [Berger et al. 2017] for a survey)

use a prior to decide between them and output a fully determined

surface, usually in a format appropriate for specific downstream

tasks like a mesh or an implicit function. These priors range from

simple geometric primitives [Schnabel et al. 2009] to global proper-

ties like symmetry [Pauly et al. 2008] or self-similarity [Williams

et al. 2019], user-specified ones [Sharf et al. 2007] and, especially in

recent years, data-driven [Groueix et al. 2018; Remil et al. 2017].

Absent task-specific knowledge, a commonly used prior is smooth-

ness. This can be enforced explicitly by considering only surfaces

parametrized by a smooth family of functions; for example, spatially-

varying polynomials [Alexa et al. 2003; Levin 2004; Ohtake et al.

2005] and linear combinations of radial basis functions [Carr et al.

2001]. Smoothness can also be enforced variationally: Poisson Sur-
face Reconstruction (PSR) [Kazhdan et al. 2006; Kazhdan and Hoppe

2013] encodes volumetric smoothness away from the input point

cloud byminimizing the integrated gradient of the surface’s implicit

representation and remains one of the best performing general sur-

face reconstruction algorithms in terms of robustness and efficiency

(see Table 1 in [Berger et al. 2017]). While the authors solve this

optimization problem using the Finite Element Method on a hierar-

chical grid, Dai and Nießner [2022] have recently proposed using a

neural network for a similar task, albeit they suggest forgoeing the

volumetric integration and instead minimizing the gradient only

at the point cloud points (see Figs. 3 and 4). We cover PSR and its

variants in more detail in Section 3.1.

2.2 Stochastic Surface Reconstruction
From a statistical perspective, the vast majority of surface recon-

struction works limit themselves to outputting the likeliest surface

given the point cloud observations and their assumed prior. Rela-

tively fewer works take this stochastic perspective one step further

and compute a posterior distribution of all possible surfaces condi-

tioned on the observations. For example, Pauly et al. [2004] quantify

the likelihood of any spatial point belonging to the reconstructed

surface by measuring its alignment with the point cloud.
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Figure 4: Even before overfitting, the result by Dai and
Nießner [2022] does not replicate the PSR output, with non-
zero gradients away from the data.

More recently, Stochastic Poisson Surface Reconstruction [Sellán

and Jacobson 2022] reinterprets the classic algorithm as a Gauss-

ian Process, enabling the computation of statistical queries crucial

to the reconstruction process and applications such as ray cast-

ing, point cloud repair, and collision detection. The authors utilize

a Finite Element discretization to compute the mean and covari-

ance functions of the posterior multivariate Gaussian distribution,

which represents the likelihood of all possible reconstructions (see

Section 3.2), resorting to a several approximations and parameter

choices for computational tractability (see Figure 5). In contrast,

our work proposes the parametrization of these functions using

neural networks, optimizing them through gradient-based methods

for a more efficient and flexible approach while still computing the

same statistical quantities (see Figure 7).

2.3 Neural PDE solvers
We propose solving the Poisson equation in Stochastic PSR using a

neural network. As such, our algorithm is one more application in

the growing field of neural partial differential equation solvers. A

broad class of these are Physics-Informed Neural Networks (PINNs)
(see [Cuomo et al. 2022] for a literature review), which effectively

soften a PDE and its boundary conditions into integral loss terms

that are minimized with, e.g., stochastic gradient descent.

If a given PDE accepts a variational formulation, the above pro-

cess can be done in a more principled way, as shown by Yu et al.

[2018]. This is the case for the Poisson equation, which can be equiv-

alently described as a variational Dirichlet energy minimization.

This is noted by Sitzmann et al. [2020], who show the impressive

performance of sinusoidal activation functions when applied to

Dirichlet-type problems. We borrow from their observations and

propose a network architecture with sine activations.

2.4 Next-Best-View planning
A key benefit of proposed approach is its integration in the 3D scan-

ning process. Specifically, it allows us to compute a score function
that quantifies how useful a proposed next sensor position would be

for the reconstruction task. This is a common first step in the active
vision or next-best-view planning pipeline, which has been a subject

of study for decades (see, e.g., [Chen et al. 2011; Scott et al. 2003]

for surveys). In it, prospective sensor placements may be scored

by accounting for one or several factors like coverage [Bircher

et al. 2016; Connolly 1985; Yamauchi 1997], navigation distance,

expected reconstruction error [Vasquez-Gomez et al. 2014], scene

segmentation entropy [Xu et al. 2015] and redundancy of multiple

views [Lauri et al. 2020]. Orthogonally, works may need to rely on

coarse shape priors for the reconstruction [Zhang et al. 2021; Zhou

…with varying grid sizes
Ours

Input
point cloud

…with varying subspace sizes

[Sellán and  Jacobson 2022]…

Figure 5: Sellán and Jacobson [2022] couple the reconstruc-
tion lengthscale with their discretization grid spacing, and
require a subspace approximation. Our neural network dis-
cretizations avoids both issues.

et al. 2020] or balance improving reconstruction in sampled areas

with exploring new unsampled ones.

More recently, volumetric methods like those by Isler et al. [2016],

and Daudelin and Campbell [2017] use simple heuristics (e.g., dis-

tance to the point cloud combined with visibility) to quantify the

marginal likelihood of a given point in space being contained in the

reconstructed object. This quantity is discretized onto a voxel grid

and used to quantify the expected information gain from a given sen-

sor position. Building on these works, our proposed utility function

requires no heuristics, coming instead directly from the statisti-

cally formalized reconstruction process and, unlike [Daudelin and

Campbell 2017], accounts for the possible spatial interdependencies

along a single ray (see Figure 13). Further, since our reconstruction

is parametrized by a neural network, this score is differentiable

with respect to the sensor parameters, allowing for the efficient dis-

covery of locally optimal camera placements (see Figure 6). While

we introduce said novel, differentiable utility function, the develop-

ment of a comprehensive next-best-view planning pipeline, which

would encompass global searches, travel times, collision avoidance,

and robot constraints, falls outside the scope of this paper.

Finally, outside of the point cloud reconstruction realm, the

recent popularity of Neural Radiance Fields [Mildenhall et al. 2021]

has also given rise to uncertainty-driven approaches for next-best-

view planning in RGB multi-view representations (see, e.g., [Jin

et al. 2023; Kong et al. 2023; Smith et al. 2022; Sucar et al. 2021]).

3 BACKGROUND
Given an oriented point cloud P with points 𝑝1, . . . , 𝑝𝑛 and cor-

responding (outward-facing) normal observations ®𝑛1, . . . , ®𝑛𝑛 , we
consider the implicit reconstruction task of finding a function

𝑓 : R𝑑 → R such that

𝑓 (𝑝𝑖 ) = 0 , ∇𝑓 (𝑝𝑖 ) = ®𝑛𝑖 , ∀𝑖 ∈ {1, . . . , 𝑛} . (1)

The zero levelset S = 𝑓 −1 ({0}) is the reconstructed surface, whose
interior is Ω = {𝑥 ∈ R𝑑 : 𝑓 (𝑥) ≤ 0}. We will be consistent with

this convention that places negative implicit function values inside
the reconstruction, and positive ones outside.
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Figure 6: We provide a differentiable utility function that we can optimize to explore local next-best-views.
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Figure 7: Like Sellán and Jacobson [2022], our algorithm can
respond to statistical queries related to the reconstruction.

3.1 Poisson Surface Reconstruction
Poisson Surface Reconstruction (PSR) [Kazhdan et al. 2006] builds 𝑓

in two steps. First, a smear kernel 𝐹 is used to interpolate ®𝑛𝑖 into a

vector field ®𝑣 : R𝑑 → R𝑑 defined in a box 𝐵 containing P:

®𝑣 (𝑥) =
𝑛∑︁
𝑖=1

𝐹 (𝑥, 𝑥𝑖 ) ®𝑛𝑖 . (2)

Then, 𝑓 is defined as the function whose gradient best matches ®𝑣 :

𝑓 = argmin

𝑔

∫
𝐵

∥®𝑣 (𝑥) − ∇𝑔(𝑥)∥2 dx . (3)

This variational problem is equivalent to the Poisson equation

Δ𝑓 = ∇ · ®𝑣 (𝑥) , (4)

which the authors discretize using the Finite Element Method on an

octree and solve using a purpose-built multigrid algorithm. Since

Eq. (4) alone does not uniquely determine 𝑓 , a valid 𝑓 is computed

and its values shifted to best satisfy 𝑓 (𝑝𝑖 ) = 0.

In Screened Poisson Surface Reconstruction, Kazhdan and Hoppe

[2013] circunvent this by adding a screening term to Eq. (3)

𝑓 = argmin

𝑔

∫
𝐵

∥®𝑣 (𝑥) − ∇𝑔(𝑥)∥2 dx + 𝜆
𝑛∑︁
𝑖=1

𝑔(𝑝𝑖 )2 (5)

which translates into a Screened Poisson equation

(Δ − 𝜆𝐼 ) 𝑓 = ∇ · ®𝑣 (𝑥) , (6)

for a specific masking operator 𝐼 .

3.2 Stochastic Poisson Surface Reconstruction
Screened or not, the output of Poisson reconstruction is a single

function 𝑓 . However, the reconstruction task is fundamentally un-

certain: Eq. (1) alone is underdetermined and satisfied by an infi-

nite number of possible functions 𝑓 . When subject to appropriate

boundary conditions, Poisson reconstruction selects one particular

solution, which can be understood as the most likely solution under

a given prior. Sellán and Jacobson [2022] formalize this statisti-

cal intuition by interpreting (𝑝𝑖 , ®𝑛𝑖 ) as observations of a Gaussian
Process and computing the posterior distribution

®𝑣 | (𝑝1, ®𝑛1), . . . , (𝑝1, ®𝑛𝑛) ∼ N (®𝜇 (𝑥), Σ(𝑥, 𝑥 ′)) . (7)

Eq. (3) is then enforced in the space of distributions, obtaining a

posterior for 𝑓 ,

𝑓 | (𝑝1, ®𝑛1), . . . , (𝑝1, ®𝑛𝑛) ∼ N (𝑚(𝑥), 𝑘 (𝑥, 𝑥 ′)) , (8)

whose mean and covariance functions𝑚,𝑘 are solutions to the

variational problem

𝑚 = argmin

𝑔

∫
𝐵

∥ ®𝜇 (𝑥) − ∇𝑔(𝑥)∥2 dx , (9)

𝑘 = argmin

𝑐

∬
𝐵

∥Σ(𝑥1, 𝑥2) − D𝑐 (𝑥1, 𝑥2)∥2𝐹 dx1 dx2 , (10)

where D𝑐 (𝑥1, 𝑥2) is the 𝑑 × 𝑑 matrix whose 𝑖, 𝑗 entries are

𝜕2

𝜕𝑎𝑖 𝜕𝑏 𝑗
𝑐 (𝑎, 𝑏)

����
𝑎=𝑥1,𝑏=𝑥2

(11)

In the same way of Eq. (3), Eqs. (9) and (10) can be written as

Poisson-style PDEs that are solved using the Finite Element Method

on a uniform or hierarchical grid. Like the original work by Kazhdan

et al. [2006], Sellán and Jacobson [2022] shift the values of𝑚 and 𝑘

after the fact to satisfy𝑚(𝑝𝑖 ) = 𝑘 (𝑝𝑖 , 𝑝𝑖 ) = 0 on average.

4 METHOD
We propose discretizing 𝑔 and 𝑐 in Eqs. (9) and (10) using neural net-

works parametrized by weights 𝜃 and 𝜙 and solving them directly

using gradient-based optimization.

4.1 Loss
Given 𝑠 samples 𝑥1, . . . , 𝑥𝑠 ∈ R𝑑 drawn from a uniform distribution

of 𝐵 (see Figure 8), let us define the Dirichlet mean loss as

L𝑚
𝐷 (𝜃 ) = |𝐵 |

𝑠

𝑠∑︁
𝑖=1

∥ ®𝜇 (𝑥𝑖 ) − ∇𝑔𝜃 (𝑥𝑖 )∥2 (12)
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Figure 8:We choose to draw samples uniformly froma bound-
ing box around the point cloud after observing overfitting
when using different strategies.

and its covariance counterpart

L𝑘
𝐷 (𝜙) = |𝐵 |

𝑠

𝑠∑︁
𝑖=1

𝑠∑︁
𝑗=1

∥Σ(𝑥𝑖 , 𝑥 𝑗 ) − D𝑐𝜙 (𝑥𝑖 , 𝑥 𝑗 )∥2𝐹 . (13)

By Monte Carlo integration, we have

L𝑚
𝐷 (𝜃 ) ≈

∫
𝐵

∥ ®𝜇 (𝑥) − ∇𝑔𝜃 (𝑥)∥2 dx (14)

and

L𝑘
𝐷 (𝜙) ≈

∬
𝐵

∥Σ(𝑥1, 𝑥2) − D𝑐𝜙 (𝑥1, 𝑥2)∥2𝐹 dx1 dx2 . (15)

Thus, the functions 𝑔𝜃★ and 𝑐𝜙★ parametrized by the minimizers

{𝜃★, 𝜙★} = argmin

𝜃,𝜙

L𝑚
𝐷 (𝜃 ) + L𝑘

𝐷 (𝜙) (16)

are solutions to the variational problem in Eqs. (9) and (10) when

restricted to the space of neural-network-parametrized functions.

Thus, they are also Poisson solutions.

It should be noted that, if one substitutes the samples 𝑥𝑖 with the

points in the input point cloud 𝑝𝑖 in Eq. (12), L𝑚
𝐷
(𝜃 ) is identical to

the loss proposed by Dai and Nießner [2022]. However, our decou-

pling of the sampling from the point cloud is critical. Importantly,

it is only by sampling from the volumetric bounding box in Eq. (12)

that we can claim to be approximating the volumetric integral in

Eq. (14) and thus solving a Poisson equation. Theoretically, this

choice has the effect of making our algorithm into a strict general-

ization of PSR (see Figure 4); in practice, it imposes a volumetric

smoothness prior that avoids overfitting (see Figure 3).

An immediate benefit of this neural perspective is the possibility

to extend the statistical formalism of Sellán and Jacobson [2022]

from the original Poisson Surface Reconstruction [Kazhdan et al.

2006] to its improved, screened version [Kazhdan and Hoppe 2013].

We can do so merely by adding mean and covariance screen losses

L𝑚
𝑆 (𝜃 ) = 1

𝑛

𝑛∑︁
𝑖=1

∥𝑔𝜃 (𝑝𝑖 )∥2 , L𝑘
𝑆 (𝜙) =

1

𝑛

𝑛∑︁
𝑖=1

∥𝑐𝜙 (𝑝𝑖 , 𝑝𝑖 )∥2 , (17)

which we combine with the Dirichlet losses to reach our total loss

L(𝜃, 𝜙) = L𝑚
𝐷 (𝜃 ) + L𝑘

𝐷 (𝜙) + 𝜆𝑆L𝑚
𝑆 (𝜃 ) + 𝜆𝑆L𝑘

𝑆 (𝜙) (18)

Mean

Variance

Input

-1 0 1 2 3 4

Figure 9: Our screen weight balances smoothness with input
fidelity, but can complicate convergence at high values.
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Figure 10: For our choice of hyperparameters, the Poisson
losses regularly dominate over the screening terms.

Inspired by the choice made by Dai and Nießner [2022], which we

validate experimentally (see Figure 9), we fix 𝜆𝑆 = 100.

4.2 Data generation
To evaluate L(𝜃, 𝜙), we first choose 𝐵 to be a loose box around the

input point cloud and uniformly sample 𝑥1, . . . , 𝑥𝑠 ∈ 𝐵. Then, as

described by Sellán and Jacobson [2022], we compute the matrices

K1 = (𝐹 (𝑥𝑖 , 𝑥 𝑗 ))𝑖, 𝑗 ∈ R𝑠×𝑠 , K2 = (𝐹 (𝑥𝑖 , 𝑝 𝑗 ))𝑖, 𝑗 ∈ R𝑠×𝑛 , (19)

as well as the lumped sample covariance matrix

D ≈ K3 = (𝐹 (𝑝𝑖 , 𝑝 𝑗 ))𝑖, 𝑗 ∈ R𝑛×𝑛 . (20)

We employ the same approximated Gaussian kernel suggested by

the authors and make use of its compact support to efficiently

evaluate the above matrices with a KD tree. Using these matrices,

we compute the Gaussian Process posterior mean

𝜇𝜇𝜇 = K2D−1N , (21)

where N ∈ R𝑛×𝑑 concatenates ®𝑛1, . . . , ®𝑛𝑛 , and the covariance

ΣΣΣ = K1 − K2D−1K⊤
2
. (22)

The row entries in 𝜇𝜇𝜇 then correspond to ®𝜇 (𝑥𝑖 ), while each scalar

entry in ΣΣΣ determines the 𝑑 × 𝑑 matrix Σ through Σ(𝑥𝑖 , 𝑥 𝑗 ) = ΣΣΣ𝑖, 𝑗 I.
As we validate experimentally in Figure 8, sampling 𝐵 uniformly

during training is necessary to maintain the theoretical guarantees

in Eqs. 14 and 15. More elaborate strategies beyond this work’s

scope (e.g., Metropolis-Hastings integration) that would result in

weights being added in Eqs. 14 and 15 may yield performance

improvements.

4.3 Architecture & Training
We model 𝑔𝜃 and 𝑐𝜙 using two five-layered MLPs (see Figure 11)

with 512 internal hidden units and sine activation functions [Sitz-

mann et al. 2020]. Our covariance network 𝑐𝜙 also includes a Soft-

Plus layer to enforce positivity, followed by an averaging (𝑐𝜙 (𝑥1, 𝑥2)+
𝑐𝜙 (𝑥2, 𝑥1))/2 (see Figure 2). Combinedwith Schwarz’s theorem, this

forces D𝑐 (𝑥1, 𝑥2) in Eq. (15) to be symmetric by construction. We
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Figure 11: Too few hidden layers can limit the geometric
detailed captured un our reconstructions. At the same time,
we observe diminishing returns and difficuly with covariance
convergence for higher layer numbers.

experimented with residual connection layers as suggested by Yu

et al. [2018], but found no significant performance improvement.

At each epoch, we generate 100,000 covariance and 100,000 mean

Poisson samples 𝑥𝑖 together with an equal number of screening sam-

ples selected from the point cloud 𝑝𝑖 (with repetition if necessary)

as detailed in Section 4.2. This sampling results in four datasets

(covariance, mean, covariance screening and mean screening). We

cycle through all four with repetition until they are all exhausted

with a 512 batch size, evaluating our losses and backpropagating

through them to compute the gradient of L(𝜃, 𝜙) with respect to

(𝜃, 𝜙). We then use the Adam [Kingma and Ba 2014] optimizer with

learning rate 10
−4

and weight decay 10
−5
. We repeat this process

for a number of epochs between 50 and 200 (see Figure 10).

Implementation details. We implement our algorithm in Python,

using PyTorch to build and train our model and Gpytoolbox [Sel-

lán et al. 2023] for common geometry processing subroutines. In

our 3.0Ghz 18-core Linux machine with a 48 GB NVIDIA RTX

A6000 graphics card and 528 GB RAM, our unoptimized imple-

mentation lasts around 30 seconds to train each epoch, the main

bottleneck being the backpropagation through the D operator in

Eq. (11). For Figures 3 and 4, we implemented the algorithm by Dai

and Nießner [2022] following their instructions in the absence of

author-provided code. We rendered our 3D results using Blender.

5 RESULTS & APPLICATIONS
5.1 3D Scanning integration
Once a point cloud has been captured, our method can be used to

compute all kinds of statistical queries useful to the reconstruction

(Figure 7) in the same way as described by Sellán and Jacobson

[2022]. However, our novel neural perspective goes one qualitative

step further and allows for a full integration into the scanning

process, providing feedback over where to scan next and efficiently

updating a given reconstruction upon capturing more data.

0

…to find the best next scan

Score+

Compare different local minima…

Figure 12: Our local next-best-view search is best combined
with a global search, where the scores of different local op-
tima are compared.

5.1.1 Ray casting. Given a captured scan and a proposed sensor

position r and direction d, a crucial question is where a ray trav-

elling from the sensor would intersect the surface. In traditional

volumetric rendering terms, this amounts to computing the opacity
along the ray, or the likelihood that a ray emanating from the sensor

reaches a given distance without terminating.

Sellán and Jacobson [2022] suggest computing the marginal

probabilities along the ray

𝑝 (𝑡) = 𝑃 (𝑓 (r + 𝑡d) ≤ 0) (23)

and interpreting these as densities

𝜌 (𝑡) = 𝑝 (𝑡)
1 − 𝑝 (𝑡) (24)

that they propose integrating to compute the opacity

𝑜 (𝑡) = 1 − 𝑒
−
∫ 𝑡

0
𝜌 (𝜏 ) d𝜏

. (25)

However, we note that this expression for the opacity is usually

employed in the context of gases, for which the effects of inter-

particle interactions are negligible and one can assume that the

likelihood of encountering a gas particle at time 𝜏 is independent

of encountering one at time 𝜏 + d𝜏 , giving validity to the integral in

Eq. (25). This independence assumption does not hold for the case

of uncertain solids, as evidenced by Figure 13: while the marginal

likelihood is 𝑝 (𝑡) = 0.5 for all 𝑡 between 𝑡1 and 𝑡2, there is no con-

figuration of the shape for which a ray terminates at 𝑡 . Statistically,

this is because the point at time 𝑡 is fully correlated with the point

at time 𝑡1. While Figure 13 is an extreme example, this difference

appears in general reconstruction examples (see Figure 14)

Accounting for these correlations is simple. Instead of Eq. (25),

one can compute the opacity as the joint probability that 𝑓 was

positive at every point in the ray prior to r + 𝑡d𝑡 :

𝑜 (𝑡) = 𝑃 (𝑓 (r + 𝜏d) > 0 ,∀𝜏 < 𝑡) . (26)

We uniformly discretize the interval [0, 𝑡] such that it amounts

to querying a cumulative multivariate Gaussian. Fortunately, as

shown by Marmin et al. [2015, Sec. 6], this expression can be differ-

entiated with respect to the entries in the covariance matrix with

the aid of Plackett’s formula [Berman 1987]. We use the PyTorch

implementation of this formula by Marmin [2023] for this task.
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Probability of ray terminating…
…by [Sellán & 
Jacobson 2022]

…ours (incl.
correlations)

Figure 13: Sellán and Jacobson [2022] consider only marginal
likelihoods to compute the termination probability along a
ray. This leads to inaccuracies in cases with high correlations
among spatial points (see text).

…by [Sellán & 
Jacobson 2022]

…ours (incl. 
correlations)

Prob. ray terminating…

50%

100%

0%
Distance along ray

Figure 14: Accounting for correlations leads to significant
differences in the ray termination distribution for general
point cloud reconstruction examples.

5.1.2 Next view planning. As seen above, the time travelled by a ray

from a given camera position before colliding with the surface can

be interpreted as a random variable, whose cumulative distribution

function is the opacity in Eq. (26). Crucially, by Foubini’s theorem,

this means one can compute the expected collision time as

⟨𝑡 (r, d)⟩ =
∫ ∞

0

(1 − 𝑜 (𝜏)) d𝜏 , (27)

leading to the expected collision point

p★(r, d) = r + ⟨𝑡 (r, d)⟩ d . (28)

The optimal sensor position will be one that generates a new

point cloud point in an area of high variance. Therefore, it makes

sense to define the score of a camera as

𝑢 (r, d) = 𝜎 (p★(r, d)) = 𝑐𝜙★ (p★(r, d), p★(r, d)) . (29)

While Sellán and Jacobson [2022] propose a camera scoring criteria,

our novel neural perspective allows us to backpropagate through 𝑐𝜙 ,

meaning that we can compute the gradient of the score with respect

to camera parameters (r, d), and find an optimal camera position

with gradient descent. We show the potential of this contribution

in Figure 6, inspired by Fig. 26 by Sellán and Jacobson [2022].

This gradient-based next view angle optimization will often con-

verge to suboptimal local minima. Indeed, as we show in Figure 12,

it is better combined with a global search by sampling several initial

sensor positions, backpropagating to find an optimum near them,

and then choosing the converged camera with the best global score.

In Figure 15, we quantify the quality of our subsequent chosen

views of a mechanical object by showing they improve on ran-

domly sampled ones. Only in this simplified setup in which views

are sampled from a sphere around the object and the directions are

constrained to aim to the same spatial point, we are able to compare

also to other heuristics like furthest-point sampling, which we show

our more generally applicable method matches or outperforms.

0.04

0.08

0.12

0

Chamfer distance to groundtruth

Random

Ours

Furthest-point
sampling

1 2 3
Scan

iteration

Figure 15: In next-view selection, our algorithm outperforms
random sampling and even matches or improves on com-
monly used heuristics like furthest point in simple setups
when the latter are available.

5.1.3 Fine-tuning. Once a new sensor position is chosen and a new

scan is taken, points are added to the cloud. Traditional algorithms

like PSR would then require investing in an updated discretization

and entirely new Poisson solve to obtain an updated reconstruction.

Fortunately, our neural perspective allows us to take advantage

of an earlier reconstruction to update it more efficiently. Indeed, as

shown in Figure 16, we may consider our model’s training on the

initial point cloud as a pretraining of our model, which is fine-tuned
for only a few epochs every time new points are captured.

Our model can thus be integrated in an end-to-end scanning

pipeline, as once an updated mean and variance is obtained, the

best next view angle optimization can start again (see Figure 1).

Our algorithm can even provide a stopping criterion, in the form of

the integrated uncertainty proposed by Sellán and Jacobson [2022].

5.2 Generalization
Another major advantage of our neural formalism over a traditional

one is the possibility to train our network on many given recon-

structions and trust it to generalize to similar-yet-unseen data. This

can circumvent expensive optimizations in cases where one has

access to a large training set of point clouds and must quickly make

inference on a newly observed set of points.

We show a prototypical example of what such a process could

look like in Figure 17, where a training set of point clouds is cap-

tured by scanning a shape from several different angles. Our model

is then expanded to accept a latent encoding 𝑧, the values of which

are trained simultaneously with the model parameters in the “au-

todecoder” style proposed by Park et al. [2019]. When a new scan

S of the object is captured, test-time optimization (with the model

parameters frozen) produces an optimal latent encoding for the new

point cloud. This reconstruction can be used as-is or fine-tuned for

a very limited number of epochs for a final reconstruction.

We believe this generalization capability can prove useful in in-

dustrial applications, where onemay be able to produce a number of

partial training scans of an object. Then, objects on an assembly line

can be quickly scanned and projected into the learned latent space

of partial scans. As we show in Figure 18, our model’s statistical

formalism can then be used (in the form of the point cloud’s average

log likelihood) to identify foreign objects or defective pieces.
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Coarse
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Refined
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Pretraining Fine tuning From scratch
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Initial
scan

New
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Our pretrained model Our fine-tuned model
Mean Variance Mean Variance

Figure 16: Sequential scanning setups benefit fromourmodel,
whose reconstruction can be updated when the object is ob-
served from new angles.

One can also use our model to generalize over a space of different-

yet-similar shapes, as we show in Figure 19, where a latent space of

scans is learned over 20 diverse human scans generated using STAR

[Osman et al. 2020]. Upon capturing a new scan, test-time latent

code optimization can efficiently provide a novel reconstruction.

6 LIMITATIONS & CONCLUSION
As we have shown, a key advantage of our neural formulation is

the possibility to iteratively fine-tune reconstructions upon captur-

ing more data. To fully take advantage of our method’s efficiency,

one may need to optimize its runtime, which we did not do be-

yond asymptotics. We believe the clearest avenues for speedups

are exploring non-uniform distributions for data generation and

task-specific weight initializations.

We introduce a method for formalizing reconstruction uncer-

tainty using a neural network. However, it should be noted that

this uncertainty is encoded by the Gaussian Process used to gener-

ate data, while the network is merely solving a PDE. A promising

avenue for future work is circumventing the GP altogether, using

Machine Learning uncertainty quantification techniques to obtain

a posterior distribution directly from the input point cloud. While

this may mean deviating from Poisson Surface Reconstruction, it

could present a major improvement in accuracy (removing the

need for covariance matrix lumping) and applicability (allowing for

sensor-specific non-Gaussian noise patterns).

All our generalization results (Figures 17, 18 and 19) use identical

(virtual) scanning devices, and every input point cloud is re-scaled

to the unit cube; as such, we do not expect our results to generalize

beyond these choices. Future work could mitigate this; for example,

by learning a latent space of device parameters and positions as

suggested by Martin-Brualla et al. [2021] in the context of NeRF.

While uncertainty quantification has become a common consid-

eration in neighboring fields like Computer Vision and Robotics

[Kendall and Gal 2017], it remains rare for Computer Graphics

works to expose their algorithmic uncertainties. It is our hope that

as our tool set grows and our field’s application realm diversifies,

our work can serve as a first step in the right direction.

x z

Our model
Mean Covariance

Training
data

Train time Test time x z

Our model

1 epoch
fine-tuning

(frozen)

Figure 17: In cases where several scans of an object are avail-
able, our model can be combined with autodecoder to effi-
ciently reconstruct new views via test-time optimization.

learned latent space
of partial scans

use likelihood to identify 
shape at test time

NLL -0.2 NLL +0.4
NLL +0.28

Figure 18: In an industrial setting, one can use our algorithm
to learn a latent space of partial scans of an object in order
to detect anomalies through any point cloud’s negative log
likelihood (NLL).

learned latent space of human scans

new scan

fine-tuned 
reconstruction

Figure 19: A dataset of similar shapes can be used to learn a
latent space of possible scans onto which new scans can be
efficiently projected.
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