
Developability of Heightfields via Rank Minimization

SILVIA SELLÁN, University of Toronto
NOAM AIGERMAN, Adobe Research
ALEC JACOBSON, University of Toronto and Adobe Research

Input heightfield
Surface viewSurface view Depth image viewDepth image view

Piecewise developable output
Zoomed view

Fig. 1. Our method, inspired by compressed sensing and the problem of rank minimization, takes as input a heightfield describing a surface (left) and outputs
a heightfield describing a piecewise developable surface (right) which approximates the input. 3D model by Lloyd Chidgzey under CC BY-SA 3.0.

This work concerns the computation and approximation of developable

surfaces — surfaces that are locally isometric to the two-dimensional plane.

These surfaces are heavily studied in differential geometry, and are also

of great interest to fabrication, architecture and fashion. We focus specif-

ically on developability of heightfields. Our main observation is that de-

velopability can be cast as a rank constraint, which can then be plugged

into theoretically-grounded rank-minimization techniques from the field of

compressed sensing. This leads to a convex semidefinite optimization prob-

lem, which receives an input heightfield and recovers a similar heightfield

which is developable. Due to the sparsifying nature of compressed sens-

ing, the recovered surface is piecewise developable, with creases emerging

between connected developable pieces. The convex program includes one

user-specified parameter, balancing adherence to the original surface with

developability and number of patches. We moreover show, that in contrast

to previous techniques, our discretization does not introduce a bias and the

same results are achieved across resolutions and orientations, and with no

limit on the number of creases and patches.We solve this convex semidefinite

optimization problem efficiently, by devising a tailor-made ADMM solver

which leverages matrix-projection observations unique to our problem. We

employ our method on a plethora of experiments, from denoising 3D scans

of developable geometry such as documents and buildings, through approxi-

mating general heightfields with developable ones, and up to interpolating

sparse annotations with a developable heightfield.

Authors’ addresses: Silvia Sellán, University of Toronto, 40 St. George Street, Toronto,

Ontario, M5S2E4, sgsellan@cs.toronto.edu; Noam Aigerman, Adobe Research, 601

Townsend St., San Francisco, California, 94103, aigerman@adobe.com; Alec Jacobson,

University of Toronto and Adobe Research, 40 St. George Street, Toronto, Ontario,

M5S2E4, jacobson@cs.toronto.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0730-0301/2020/7-ART109 $15.00

https://doi.org/10.1145/3386569.3392419

CCS Concepts: • Computing methodologies → Image processing;
Shape analysis; Mesh geometry models; •Mathematics of comput-
ing → Convex optimization.

Additional Key Words and Phrases: geometry processing, compressed

sensing, rank minimization, developable surface, heightfield

ACM Reference Format:
Silvia Sellán, Noam Aigerman, and Alec Jacobson. 2020. Developability of

Heightfields via Rank Minimization . ACM Trans. Graph. 39, 4, Article 109
(July 2020), 15 pages. https://doi.org/10.1145/3386569.3392419

1 INTRODUCTION
Developability determines an important subclass of surfaces in three-

dimensions. A (piecewise) developable surface is one that can be

constructed by folding, creasing, bending or welding planar surfaces

without stretching. Piecewise developable surfaces are all around

us: paper pages of a book, mechanical objects manufactured with a

5-axis CNC-mill, the wooden-plank hulls of boats, and the steel and

glass panels of modern architecture.

While manufacturing techniques for developable surfaces en-

joy a long history and ubiquitous use, computational methods for

developable surfaces have been notoriously elusive. Mapping the

curvature criteria of developability to common discrete surface rep-

resentations can be tricky: for example, a triangle mesh is trivially

piecewise developable; meanwhile, a quad mesh is in general non-

planar. There has been a recent surge of advances building new

discrete notions of developability for these and other common sur-

face representations. Many if not most works focus on defining

developability for a single smooth patch without crease or weld

curves, while others require a small number of explicitly provided

curves. These methods focus on forward simulation of bending pla-

nar patches into a design or surfacing provided boundary curves.

Relatively few works consider the inverse problem: which piecewise

developable surface best explains an input observation (see Fig. 1).

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392419
https://doi.org/10.1145/3386569.3392419

109:2 • Silvia Sellán, Noam Aigerman, and Alec Jacobson

Input
(depth image)

Sampling

Treating
occlusions

Our output

Energy
minimization

Fig. 2. Visual outline of our method: a (noisy) input depth image is densely
sampled with our mesh. After detection and removal of occlusion edges, our
convex energy is minimized by a tailor-made ADMM algorithm, outputting
a piecewise developable surface that is close to the input.

Methods that do exist suffer from discretization dependence, poor

robustness (e.g., getting stuck in local minima), sensitive parameters,

or poor scalability.

In this paper, we show that if we restrict consideration to height-

field surfaces, the problem of reconstructing a piecewise developable

heightfield that best approximates an input heightfield has an ef-

ficient relaxation, which can be solved as a convex optimization

problem. Our main contribution stems from a simple observation on

the connection between two seemingly unrelated fields: developable

surfaces and compressed sensing. We observe that developability

can be formulated as a low-rank constraint on the second funda-

mental form of a surface, and that for a heightfield, there exists

an efficient convex relaxation to that constraint, in the form of the

nuclear norm of the Hessian (matrix of second derivatives) of the

height function. This relaxation is rooted in compressed sensing

theory, which shows it is rank-reducing and thus aligned with the

unrelaxed objective. Minimizing this compressed-sensing-inspired

developability term along with a data-fidelity term leads to a convex

semidefinite program, which we efficiently solve using a tailor-made

ADMM algorithm. As a direct consequence of rank minimization

theory, creases and welds naturally emerge during optimization due

to the sparse concentration of energy.

Our approach has several unique advantages. It is able to handle

inputs with noise and arbitrarily high curvature. Our convex for-

mulation yields a unique global minimum. This harmonizes with

another quality: our method is controlled by a single parameter

which balances total developability and data fidelty. Geometrically,

our formulation poses no restriction on the area of the output sur-

face and the number and orientation of developable patches and

creases which may emerge via optimization. Our optimization is

not affected by the orientation of the underlying mesh connectivity

or the mesh’s resolution.

Considering only heightfields strictly limits the scope of our

method, but we argue the set of possible inputs remains vast, in-

teresting, and important. For example, architecture is rich with

examples of interesting heightfield surfaces [Vouga et al. 2012]. We

also enjoy directly accepting as input the output of rasterized 3D

scanning technologies.

We demonstrate the effectiveness of our method (see Fig. 2) on

a variety of input heightfields. We highlight the advantages of our

Input (real scan) Our output

Fig. 3. Recovering the geometry of scanned pages from a book, captured
using a 3D scan phone app. The noisy low resolution input is removed of
artifacts by our method. Scan of Ira Crumb Feels the Feelings, written by
Naseem Hrab and Illustrated by Josh Holinaty (Owlkids Books, 2018).

method through direct comparisons to the state of the art. Finally,

we show prototypical lab experiments validating our developability

reconstruction on raw, noisy 3D-scanner data (see Fig. 3).

2 BACKGROUND & RELATED WORK
Our work draws on the theory of compressed sensing, convex op-

timization, and computational methods for developable surfaces.

Each area has a broad literature so we focus this section on establish-

ing necessary background mathematics and sufficient context with

works most related to ours in terms of methodology or application.

2.1 Compressed Sensing and Rank Minimization
The full history of sparse reconstruction and L1 techniques is fas-
cinating but outside the scope of this paper (see, e.g., [Boyd and

Vandenberghe 2004; Candès and Wakin 2008]). The key insight is

that convex relaxations of NP-hard sparsity problems work surpris-

ingly well, often with provable optimality. For example, consider

the problem of finding the vector x with the smallest number of

non-zero entries which satisfies the linear equation Ax = b. This
can be written in terms of the L0 “norm”, which counts the number

of non-zeros in x:

min

Ax=b
∥x∥0. (1)

This problem is NP-hard [Boyd and Vandenberghe 2004], but its

solution generally agrees with the solution to its convex relaxation

using the L1 norm, which sums the absolute values of entries:

min

Ax=b
∥x∥1. (2)

The inset figure shows a topographic plot of

∥x∥1 for x ∈ R2, where the line represents the
constraint Ax = b. The solution lands on the

“sharp corner” of the isolines of the L1 objec-
tive, which in turn lies on the coordinate axis

implying exact sparsity.

As a result, L1 techniques have been used

to model a variety of problems in image processing (e.g., [Didas

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

Developability of Heightfields via Rank Minimization • 109:3

2k vertices
input 7k input 25k input 114k input 250k input 450k input 800k input

Output
(490 iters, 3 secs)

Output
(457 iters, 8 secs)

Output
(466 iters, 33 secs)

Output
(474 iters, 136 secs)

Output
(486 iters, 336 secs)

Output
(485 iters, 799 secs)

Output
(461 iters, 1404 secs)

Fig. 4. Algorithm behavior for increasing mesh resolutions. Our output is practically identical for all resolutions. Empirically, the number of ADMM iterations
is constant, and the runtime itself scales linearly.

and Weickert 2004; Rudin et al. 1992]) and — closer to our domain

— geometry processing (e.g., [Achenbach et al. 2015; Bouaziz et al.

2013; Brandt and Hildebrandt 2017; Huang et al. 2014; Lipman et al.

2007; Rustamov 2011; Zhang et al. 2019, 2014]). Previous works

have applied the sparsity-inducing L1 norm to value or gradient

objectives. Recently, Stein et al. [2018b] explored minimizing the L1
norm of second derivatives to reconstruct piecewise planar surfaces.

Similarly, Liu and Jacobson [2019] minimize the L1 norm on the

normals of a triangle mesh to produce cubic stylizations.

Indeed, L1 minimization has become a ubiquitious method, ap-

plied whenever sparsity is desired. Towards the goal of this paper, it

may be tempting to directly employ L1 minimization to the Gauss-

ian curvature itself, noting that vanishing curvature is equivalent

to developability. However, while L1 heuristics like this often work

well in practice, in many cases they hold no guarantees of sparsity.

As a simple example, consider a vector of unknowns v ∈ Rn and a

corresponding vector u ∈ Rn composed of the squared entries of v
(i.e., ui = v2i). Minimizing ∥u∥

1
subject to Av = b with respect to

v will not yield a sparse solution, as it is equivalent to minimizing

the regular 2-norm ∥v∥2
2
— note this lack of sparsity occurs even

though this example is strictly convex.

Intuitively, one can visualize the same image as in the inset before,

but now the isolines and the constraint-line are curved — it is no

longer clear that they intersect at a sparse corner.

Thus, minimizing the L1 norm of a vector does not immediately

entail its sparsification. This is especially true for many practical

methods, which apply the L1 to non-convex functions, usually lead-

ing to non-convex optimization. This not only mitigates the guaran-

tees of compressed sensing theory, but also entails dependence of

the output on initialization, which may lead to a significantly sub-

optimal, non-sparse local minimum. Hence, we make a geometric

observation which enables us to to employ a theoretically-founded

convex optimization problem often used in rank minimization. Its

crux is a well-studied sparsifying objective, discussed next.

While, in general, minimizing the L1 norm of non-convex func-

tions results in a non-convex (and not necessarily sparsifying) func-

tion, there is one important exception: applying it to the vector of

singular values of the matrix X ∈ Rn×m . This matrix function is

called the nuclear norm, denoted

∥X∥∗ =
m∑
i=1

σi (X) , (3)

with σi (X) ≥ 0 being the i
th

singular value of X. In case X is

symmetric these are equal to the absolute value of the eigenvalues.
As its name implies, the nuclear norm is a true mathematical

norm on the space of matrices [Fazel et al. 2001], even though the

singular values are highly non-convex functions. Moreover, it is

optimizable by standard convex programming techniques, namely

semidefinite programming.

The nuclear norm has been deeply studied in compressed sensing,

with theory supporting its applicability to rank minimization. In fact,
it is known to be the convex envelope of the rank for matrices in

the unit ball, and is often minimized to recover low-rank matrices.

The intuition for its connection to rank minimization can be

derived by noting that the (NP-hard) problem of rank minimization

can be equivalently written in the form of an L0 minimization,

analogous to Equation (1):

min

AX=B
∥σ (X) ∥0 ⇔ min

AX=B
rank(X) (4)

where here X is considered as a column-stacked vector, and σ (X) is
the vector of singular values. The analogous L1 relaxation follows,

with the L1 norm of the singular values being exactly the nuclear

norm, leading to the (surprisingly) convex relaxation:

min

AX=B
∥σ (X) ∥1 ⇔ min

AX=B
∥X∥∗ (5)

In image processing, nuclear norm minimization for low-rank ap-

proximation has enjoyed widespread use (e.g., [Candès et al. 2011]).

In geometry processing, low-rank optimizations via the nuclear

norm have appeared for mesh animation [Mukai and Kuriyama

2016], surface reconstruction [de Lima and Bíscaro 2015; Pan et al.

2016], normal estimation [Zhang et al. 2013] and geometric denois-

ing [Arvanitis et al. 2019; Lu et al. 2018; Wei et al. 2019]. To our

knowledge, no previous work has considered the nuclear norm as a

convex relaxation of developability.

2.2 Computational Developability
A smooth surface (at least piecewise C2

and possibly with bound-

aries) is developable if its Gaussian curvature is zero everywhere:

K = κ1κ2 = 0⇔ κ1 = 0 or κ2 = 0, (6)

where K ,κ1,κ2 are the Gaussian, maximum, and minimum curva-

ture, respectively (see, e.g., [O’Neill 1966]). This condition implies

not just that locally the surface is ruled (defined by sweeping a

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

109:4 • Silvia Sellán, Noam Aigerman, and Alec Jacobson

Original shape

Input (simulated scan)

Output

Fig. 5. A coarse mesh of the Walt Disney Concert Hall is further coarsely
voxelized and then recovered by our method. Note the recovery of the sharp
crease that is not well-approximated in the original coarse mesh. 3D model
by Juan Rodríguez under CC BY-SA 3.0.

straight line), but further that the surface normals along any ruling

line are constant.

Splines present an attractive and promising discrete representa-

tion [Leopoldseder and Pottmann 1998; Pottmann and Farin 1995;

Pottmann and Wallner 1999]. More recently, Tang et al. [2016] it-

eratively project piecewise-spline surfaces onto the submanifold

of developable splines for predetermined crease and fold patterns.

Taking a discrete differential geometry approach, Liu et al. [2006]

define a discrete notion of developability for planar quad meshes.

Inputs to this method should be a principal-curvature aligned quad

mesh, and the output is restricted by the connectivity of the input

mesh. In a recent series of works by Rabinovich et al. [2018a; 2018b;

2019], this restriction was lifted by introducing discrete orthogonal

quad meshes. Predetermined creases are incorporated by constraints

between overlapping developable meshes.

Various surface design and paper folding approaches have also

discretized a single developable surface using strips and ribbons

[Kergosien et al. 1994; Kilian et al. 2008; Pottmann et al. 2008; Re-

dont 1989; Wang et al. 2019] and piecewise developables using pre-

determined patch layouts [Bo and Wang 2007; Frey 2004; Solomon

et al. 2012]. Treating folding as a forward simulation, it is possi-

ble to apply the finite-element method and optimize over triangle

meshes [Bradley 2006; Dudte et al. 2016; Rose et al. 2007], utilizing

remeshing [Narain et al. 2013; Schreck et al. 2015] to avoid locking

and allow creases to emerge. We eventually discretize our problem

Input Output

Fig. 6. Agnosticism of our method to the alignment of the underlying mesh:
a harsh misalignment of 10°between the creases (purple line in blowup) and
the edge lines (yellow line) does not hinder the ability of our method to
recover a piecewise developable surface aligned with the input features,
without bias to the edges. 3D model by Bold Machines under CC BY 4.0.

over a triangle mesh, but consider this choice incidental. Creases

and smooth developable patches emerge regardless of our mesh

resolution or orientation, without remeshing (see Fig. 4). Unlike

these forward simulations designed to fold a flat design into 3D, our

optimization finds a developable surface that closely matches an

arbitrary input heightfield (see Fig. 5).

Closer to our reconstruction problem, previous works have con-

sidered segmentation of an input surface into (near-)developable

patches [Julius et al. 2005; Lee and Bo 2016]. Jung et al. [2015] con-

nect this task to curve-based modeling of 3D piecewise developable

surfaces. Lee and Bo [2016] conduct point-cloud segmentation using

a planarity prior, followed by independent developable patch fitting.

Prior works have shared our motivation to reverse-engineer exist-

ing physical objects and prepare virtual objects for manufacturing.

They have considered fitting a single developable patch [Chen et al.

1999; Peternell 2004], finding (near-) developable patches between

a predetermined boundary layout [Decaudin et al. 2006; Subag and

Elber 2006], fitting developable templates [Hofer et al. 2005], or a

sequential optimization that determines a segmentation then fits

each developable to each patch [Lee and Bo 2016]. Perriollat and

Bartoli [2013] share a similar experimental setup as ours for devel-

opable reconstruction from real scan data. Their method considers

a single developable surface without sharp creases or welds.

Recently, Stein et al. [2018a] introduced the current state-of-the-

art method for approximating an input surface with a piecewise

developable surface. Rather than minimize Gaussian curvature di-

rectly (cf. [Bradley 2006]), Stein et al. flow the vertices of a mesh

until edges align with creases and ruling directions. This method

is heavily dependent on the initial triangulation, which is in turn

treated as the user’s interface to control the method. Creases emerge

during the non-convex optimization, before reaching a local min-

imum. Getting stuck in a local minimum is both a disadvantage

and an important criterion because their method does not include

a notion of adherence to the input surface, aside from the flow ini-

tialization. We compare directly to this method in Figs. 22 and 20.

Our method is restricted to heightfields, but enjoys convexity and

stability with respect to the input triangulation (see Figs. 5 & 6).

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

Developability of Heightfields via Rank Minimization • 109:5

Input min ||H(z)||
*

min n ||H(z)||
*

3min n (z)||H(z)||
*

3

Fig. 7. Comparison of minimizing the Hessian’s rank with minimizing the
rank of possible proxies to the second fundamental form. The results are
virtually identical, with the maximum distance between the three staying
under 1% of the bounding box length.

3 DEVELOPABILITY AS HESSIAN RANK MINIMIZATION
Our goal is to design a convex objective function that will measure

how developable an input heightfield surface is. Let us start by

considering a sufficiently smooth surface and we will finish with

our proposed discretization over a 2D lattice.

A surface is (piecewise) developable if its Gaussian curvature K is

zero (almost) everywhere. Without mentioning principal curvatures

explicitly, we can rewrite Equation (6) in terms of the determinant

of the surface’s second fundamental form II ∈ R2×2:

K = det II = 0, (7)

where we note that if II is transformed into the coordinate system of

the principal curvature directions then it becomes a diagonal matrix

made of κ1 and κ2, and the determinant is κ1κ2.
Requiring that det II = 0 is equivalent to requiring that the rank

of the second fundamental form is less than one:

rank(II) ≤ 1. (8)

For a non-developable surfacewe can generally expect that rank(II) =
2. Moving the surface to decrease the rank of the second fundamen-

tal form will increase developability.
Integrating the rank of the second fundamental form would lead

to an unwieldy objective function. Instead, we invoke the theory of

rank minimization (see Eqs. (4-3)) and approximate rank integration

with the sum of the nuclear norm of the second fundamental form

to define our developability objective for a smooth surface S :∫
S
∥II∥∗dA. (9)

While this energy is convex in II, II is still non-linear in the surface

positions, leading to a non-convex energy. Our key insight is that

we can use a linear proxy for II when the surface is a heightfield. In

turn, Equation (9) becomes convex in the height values.

Consider now that the surface S can be described as a graph above
the plane: z(x ,y) : R2 → R, transforming the area element dA into

dxdy. The Hessian H : R2 → R2×2 of this height function is the

symmetric matrix of second partial derivatives:

H(x ,y) :=

(
∂2z
∂x 2

∂2z
∂x∂y

∂2z
∂x∂y

∂2z
∂y2

)
. (10)

In Appendix A, we show that the Hessian H of a heightfield z is
proportional in some basis to the second fundamental form II of the
surface defined as the graph of z. In particular, this means that:

Corollary 3.1. H has low rank if and only if II has low rank.

Thus, we can safely substitute H for II in Equation (9), resulting

in our proposed developability objective for heightfields:∬
∥H(x ,y)∥∗ dxdy. (11)

The Hessian is a linear operator in the height function z, and hence,

combined with the convex nuclear norm this objective is convex in

the height z. The scalar factor that relates H and II (see Appendix A)
depends on the surface’s geometry and is what makes Equation (9)

non-convex. In Fig. 7, we compare the convex minimization of

Equation (11) (center left) to the non-convex one of Equation (9)

(center right). We also add a naive convexification of Equation (9)

(right), with this factor being computed only in the input surface

and made constant throughout the minimization. We carry out all

three of these optimizations using the same ADMM formulation

described in Section 4.1; in the non-convex case, we update the

scalar factor at each ADMM iteration. We find the results to be

qualitatively similar and choose to keep this simpler substitution

by H which guarantees convexity.

3.1 Discretization
We discretize the Hessian nuclear-norm energy in Equation (11)

over a regular hexagonal lattice with edge length h placed over the

planar domain. For each vertex i , we associate its two-dimensional

position xi = [xi yi] ∈ R2 and its height value zi ∈ R. Treating z as
a smooth function, its Taylor expansion exposes its Hessian matrix:

z(x + ∆x) = z(x) + ∇z⊤(∆x) +
1

2

(∆x)⊤H(∆x) + . . . (12)

This suggests a best quadratic fit approximation of the Hessian (and

gradient and constant).

4 53

1 2

6 7

4 53

1 2

6 7

The chosen hexagonal lattice supplies six

neighbors that are equal distance and

equally distributed radially to facilitate this

approximation. Compared, e.g., to a regular

square lattice, this leads to a less biased ap-

proximation. Looking locally at one vertex

at position x4 surrounded by its six neigh-

bors (w.l.o.g., indexed reading order), we

can solve for the coefficients c = [hxx ,hyy ,hxy ,дx ,дy , c] of the
best fit quadratic function:

min

c ∈R
g∈R2

H=H⊤∈R2×2

1

2

7∑
i=1

c4 + g⊤(xi − x4) + 1

2

(xi − x4)⊤H(xi − x4) − zi

2
.

Fortunately, this can be written as a linear function of the vertex

heights c = Bz (see Appendix B for details) for a specific matrix B.
Applying the first three rows of this matrix locally at each vertex i
reveals the entries of the best fit Hessian hixx ,h

i
yy ,h

i
xy as a linear

function of the local height values.

0 60 120 180

Square

Hex

It is now that we can justify our choice

of a hexagonal lattice as oppossed to

a square one. Experimentally, we ob-

serve that using a sampling on a square

leads to approximated Hessians that

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

109:6 • Silvia Sellán, Noam Aigerman, and Alec Jacobson

1010101010 10 10

10

10

10
1

-1

-3
9876544 Input

κ

λ

2Median

Fig. 8. The λ parameter directly controls the output developability. George
Washington bust model by Brian Palmer under CC BY-SA 3.0.

are biased towards alignment with the grid edges (multiples of

ninety degrees). This is in contraposition to our hexagonal one,

where bias towards the grid directions is barely distinguishable. In

the inset, we show the results of an experiment where we randomly

generated samples on both square and hexagonal minimal grids to

then obtain the angles of the principal directions of the least-squares

Hessian. The preference for the hexagonal case is thus justified.

Let

Hi =

(
hixx hixy
hiyx hiyy

)
∈ R2×2 (13)

be the Hessian approximation corresponding to vertex i . For a (pos-
sibly non-convex) planar domain with boundary, we may now sum-

marize our discretized Equation (11) as sum over interior vertices I

(i.e., set of vertices with a full set of neighbors inside the domain):∑
i ∈I

∥H∥∗ . (14)

The boundary vertices ∂I of the domain are then the set of non-

interior vertices touched by any B stencil. In the absence of other

constraints, minimizing this energy will lead to these vertices receiv-

ing discrete natural boundary conditions (cf. [Courant and Hilbert

2008; Stein et al. 2018b]).

This energy (and its smooth counterpart) has exactly affine func-

tions in its null spaces. While this means it is non-zero for non-affine

developable surfaces, it should not dissuade us from its use as a de-

velopability measure. This should be analogously comfortable to

those familiar with the use of the total variation energy (see, e.g.,

[Boyd and Vandenberghe 2004]) as a smoothness regularizer despite

only having constant functions in its null space. In the presence of a

data-fitting term or non-trivial boundary conditions, the minimizer

will be far from the null space and the gradient behavior of the

energy will be the dominating effect.

4 PIECEWISE DEVELOPABLE FITTING
With our discretized Hessian’s nuclear norm in hand, we can turn

to the main problem that we wish to solve: fitting a piecewise devel-

opable surface to an input heightfield observation. We will assume

that the observed heightfield data z̃ ∈ Rn arrives as values on a

hexagonal lattice withn vertices as discussed in the previous section,

or otherwise can be resampled accordingly.

Our fitting energy consists of an L2 data fidelity term and our

discrete Hessian nuclear norm energy from Equation (14), leading

to the following optimization problem:

min

z,h
λ

∑
i ∈I∪∂I

∥zi − z̃i ∥
2 +

∑
i ∈I

∥H∥∗ (15)

subject to Cz = h

and hixy = h
i
yx ∀i ∈ I (16)

where h ∈ R4 |I | stacks all of the Hessian coefficients of interior

vertices and the sparse matrix C ∈ R4 |I |×n linearly assembles

them according to the local stencil B above. The scalar weighting

parameter λ balances data fidelity and developability (see Fig. 8).

While the objective is convex in the unknown height values

z ∈ Rn it is more complicated than a simple quadratic program. In-

deed, as Fazel et al. [2001] shows, nuclear norm minimizations like

this can be reduced to a semi-definite programming problem (see

Appendix C). While solving this SDPwith standard convex optimiza-

tion techniques would be a possibility (see [Boyd and Vandenberghe

2004; Fazel et al. 2001]) we can do significantly better by using the

specifics of our energy to design a direct ADMM optimization.

4.1 Tailor-Made ADMM Optimization
The alternating direction method of multipliers (ADMM) has been

a boon to convex optimization [Boyd et al. 2011]. This method

is generally applicable for linearly constrained convex programs

written as the sum of two convex objectives, and fortunately our

problem in Equation (15) already has this form and is in fact already

split so that the first and second terms depend only on the z and h
variables, respectively.

Let us use the notation Ci ∈ R4×n to be the four rows of C
corresponding to vertex i . We introduce a set of dual variables u
corresponding to h (with analogous notation Ui ∈ R2×2 as in Equa-

tion (13)). We now follow the scaled form of the ADMM algorithm

described by Boyd et al. [2011], which repeats three steps:

z← argmin

z
λ∥z − z̃∥2 +

ρ

2

∥Cz − h + u∥2 , (17)

Hi ← argmin

Hi

Hi

∗
+
ρ

2

2×2(Ci z) − Hi + Ui

2
F , ∀i ∈ I, (18)

u←u + Cz − h, (19)

where

2x2(a) :=
(
axx axy
ayx ayy

)
. (20)

We can see immediately that the z update step in Equation (17)

is a simple quadratic minimization solved via an n × n sparse lin-

ear system. The h update step in Equation (18) is embarassingly
parallel across the vertices of the mesh, depending only on local
data. Each local problem is a small semi-definite program in four

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

Developability of Heightfields via Rank Minimization • 109:7

Input Occlusions Output Filled Output

Fig. 9. Pre-processing and post-processing for handling occlusions, illustrated in 1D on top, and with a real input on the bottom. The input (left) is tesselated
so that each vertex is connected to all its neighbours. During occlusion detection (second from left), vertices that lie across a steep change in height are set as
boundary and their Hessians are ignored. The two blue vertices contribute to their red neighbours’ Hessian, but the green vertex has no non-boundary vertices
adjacent and hence removed. After running our method (second from right) on this modified input, the omitted green vertex is restored (right), with its height
value set by extrapolating the quadric approximation of the closest non-boundary vertex. 3D model by 3DWP under CC BY-NC-SA 4.0.

variables (hixx ,h
i
yy ,h

i
xy ,h

i
yx). Rather than call a general-purpose

algorithm, we can solve each in closed form and avoid auxiliary

variables and other overheads (see Appendix D).

After each iteration through the three steps in Equations (17-19),

we check for convergence (following [Boyd et al. 2011]) and update ρ
using the rule given by [Boyd et al. 2011] in Section 3.4.1. Updating

ρ changes the system matrix in the update of z in Equation (17)

which invokes a new sparse Cholesky factorization. To avoid doing

this too often we loosen the criteria on triggering a ρ-update as

recommended by Stellato et al. [2017].

Occlusion boundaries. Our optimization so far will work well for

(noisy) observations of a continuous heightfield. In many practical

scenarios, there will be very large jumps in the value of the ob-

servations z̃ at self-occlusion boundaries. In some scenarios, these

boundaries are known a priori and we can accept them as input. In

most cases, the occlusion boundaries will need to be detected auto-

matically. Occlusion detection is not the main focus of our paper,

but for reproducibility we describe the heuristic we used to create

our examples and experiments.

e

We fit a quadratic function to the six vertex

heights that are in the vicinity of each edge (see
inset). If the largest eigenvalue of the quadratic

function’s Hessian is great than a threshold (in

our results, this threshold is 4 × 104), then we

declare the edge to be an occlusion boundary.

As grid (i.e., “scanning”) resolution increases, the curvature of the

quadratic fit across these edges grows asymptotically, guaranteeing

that for a fine-enough grid, all occlusions, and only them, will be

detected. We reiterate that occlusion detection is not our focus;

other more sophisticated methods may exist and our developability

optimization would immediately benefit from them.

Once provided or detected, the vertices of each occlusion edge

are removed from the set of interior vertices (I) where the Hessian

stencil will be evaluated (see Fig. 9). Prior to optimization, we omit

any vertices that may end up not touched by any stencil (i.e., not in

I or ∂I). We then restore these vertices by setting its height value

by extrapolating from a best-fit quadratic function to the solution,

centered around the nearest interior vertex (see Fig. 9).

5 RESULTS
Ourmethod’s robustness and independence to discretization enables

its employment for different goals, from in-the-wild capture of piece-

wise developable surfaces, through approximating non-developable

heightfields with developable ones, and up to interpolation of given

height constraints with a developable heightfield. We further evalu-

ate various aspects of our method’s performance, and compare to

two rivaling techniques for developability and mesh denoising.

In producing the following results, we chose between three single

options for λ: “big” or λ = 10
7
, “medium” or λ = 10

6
and “small” or

λ = 10
5
. The heuristic for choosing between these three is simple. In

cases where our input is close to developable but for a few artifacts

(see Figs. 3, 11, 15, 17 top left, and 16), we choose the “big” λ since

we expect little deviation from the input. In cases where the amount

of noise is large in both amplitude and distribution (see Figs. 5, 12,

10, 17 top right and bottom, and 21), we choose the “small” λ. Finally,
in the cases where the input is clearly non-developable and we wish

to approximate it by developable patches, the choice of λ represents

the stylistic decision of whether to have a higher number of patches

but a higher input fidelity, or lower both.

We normalize the XY coordinates of every heightfield to fit the

unit square in the interest of consistency. Unless specified otherwise,

all our examples contain 50k-300k vertices. We have also made the

conscious choice of rendering our results using a metallic material to

emphasize the surface normals, which are key to visually analyzing

developability. We have done this also in cases like Figs. 10 and 3,

where the scanned material (paper) is considerably less reflective.

We implemented our method in Matlab, relying on the libraries

gptoolbox [Jacobson et al. 2016] and libigl [Jacobson et al. 2018].

We report timings conducted on a machine with Intel Xeon CPU

E5-2637 v3 @ 3.50Hz (16 cores), Nvidia GTX 970 and 64 GB of RAM.

5.1 Recovering Scanned Developables
Depth scans of piecewise developable geometry are a natural fit to

our method as they produce heightfields. Due to noise and blurring,

the resulting scans contain significant artifacts like oscillating nor-

mals and over-smoothing of sharp creases. Our method can be used

to recover the underlying piecewise developable geometry.

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

109:8 • Silvia Sellán, Noam Aigerman, and Alec Jacobson

Experimental setup
Unwrapped input Unwrapped oursScan noise

Input: Scan noise +
10% random noise

Our output

Fig. 10. Recovering the developable geometry of a scanned page. The scan’s inherent noise is further amplified by additional synthetic noise, which is then
run through our algorithm. On the right, the unwarping of the input and output reveals our method’s removal of non-developable artifacts.

Input (real scan) Our output

Fig. 11. Reconstructing a noisy phone-app scan of a crumpled notepad
paper is cleaned by our method.

Paper scans. To test our method’s ability to recover developable

geometry from scans, we printed a grid on an A4 paper and scanned

it using a high-resolution depth scanner, as shown in Fig. 10. To

further challenge our method, we added an additional random noise

with amplitude of 10 percent of the full input’s amplitude, and

ran it through our method. To verify our result, we unwarped the

geometry to 2D, by running an isometric parameterization algorithm

[Liu et al. 2008], see Fig. 10, right . If the output is not developable,

i.e., is not isometric to a planar sheet, the unwarping will have

distortion. Indeed, the unwarping of the noisy input is jagged and

exhibits distortion, while our method’s output is unwarped with

smooth, straight lines.

A similar experiment is shown in Fig. 3; however, in this case we

use a depth-scanning smartphone app, that even for this smooth

input produces a low quality scan with oscillating normals. Our

method succeeds in removing these artifacts and recovers the natu-

ral curving of the pages, while still adhering to the crease between

the pages. The same process is followed in Fig. 11, where we recover

the shape of our crumpled notepad from a noisy phone scan.

Simulated rasterized scans of large-scale objects. To simulate scans

of real-world large-scale objects, we coarsely rasterize them and

then sample a heightfield, to create a staircasing effect. This effect

is especially challenging to our method, as it is piecewise-zero-

curvature when sampled densely by our grid. However, since our

Input (simulated scan)

Output

Fig. 12. Recovering the Bilbao Guggenheim Museum from a simulated
depth scan.

method aims to strike a balance between developability and number

of creases, it still optimizes to remove this artifact. In Figs. 5 and 12

we show two examples of our method applied to rasterizations of

famous piecewise developable buildings – the Disney concert hall,

and the Bilbao Guggenheim Museum, respectively. Note the Disney

concert hall is initially a coarse surface mesh with triangulation

artifacts (note recovered crease on left). We nonetheless manage to

recover smooth developable surfaces in both cases and remove the

staircasing artifact.

5.2 Developable Approximations to Heightfields
When the input heightfield is not assumed to be sampled from a

developable surface, our method is still successful in approximating

the input with a piecewise developable heightfield.

Developable stylization. We can approximate given heightfields

with developable patches, which can be used as a stylization effect or

for fabrication from bendable metal sheets. Here λ serves as an artist-
chosen parameter balancing adherence to geometry with number

of patches. In Fig. 13 we use our “small” λ to decompose the lion’s

scultpure into few developable pieces. In Fig. 14, our “big” λ leads

to a better approximation of the heightfields with more developable

patches; only small detail such as facial features are lost.

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

Developability of Heightfields via Rank Minimization • 109:9

Input Our output

Fig. 13. Using our method we can reconstruct the lion from large, devel-
opable patches. Model from the AIM@SHAPE mesh repository.

Input InputOutput Output

Fig. 14. A developable museum. Rodin’s Les Bourgeois de Calais model (left)
by Yasmine Afshar under CC BY-NC 4.0 and Bronze Greek Statue (right)
model scanned by Matt Stultz under CC BY-SA 3.0.

Alleviating tessellation artifacts. A coarse mesh of a developable

surface can also be sampled densely with our grid, to enable an

ad-hoc “developable superesolution upsampling" that restores a fine

developable heightfield from the sampling of the coarse mesh. In

Fig. 15 we show a heightfield stemming from amesh of Zaha Hadid’s

Bench. Our output recreates a perfectly smooth developable surface,

removing the visible tessellation artifacts. Likewise, in Fig. 16 we

recover the high-resolution, piecewise developable Fandisk from

its low-resolution counterpart. Note how our method smooths the

different pieces without affecting the creases.

Finally, we sample heightfields from three different triangulated

outputs generated by [Rabinovich et al. 2018a] to illustrate the

strength of our method. In Fig. 17, we densely upsample one of their

geodesic nets (top left) to remove tessalation artifacts, using “big”

λ. In the top right and bottom, we add synthetic noise and use our

“small” λ to denoise them and recover the developable groundtruth.

Input (with
artifacts)

Our Output

Fig. 15. Recovering the underlying developable surface while removing
triangulation artifacts of Zaha Hadid’s Bench (model by VSR under CC
BY-SA 3.0).

Input (with artifacts) Output

Fig. 16. Recovering the high-resolution Fandisk from a coarse mesh.

Input Our output Input Our output

Input Our output

Fig. 17. Given coarse results from [Rabinovich et al. 2018a], our method
can be used to either remove the discretization artifacts (top left) as well
as to recover the underlying developable surface when synthetic noise is
added (top right and bottom).

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

109:10 • Silvia Sellán, Noam Aigerman, and Alec Jacobson

Input (fixed point constraints) Our output

Fig. 18. We minimize the nuclear norm subject to fixed points constraints
to apply our method to developable data interpolation.

Input
(fixed points)

Our output

Fig. 19. We use fixed point constraints (left) to generate the heightfield of a
cathedral roof using our nuclear norm minimization.

5.3 Design of Developable Heightfields

z = 1

z = 0

Input Our output

Our approach can also be

used for designing heightfields

that are developable. Given a

sparse set of constraints of the

form zi = bi , we fix them

as hard constraints Cz = b
in Equation (15). We can then

solve our optimization Equation (15) with only the nuclear norm

term, to enforce developability of the output signal in the interpo-

lated points (see inset). In Figs. 18 and 19 we present possible use

cases, where the boundary conditions are drawn using a standard

image editing software.

5.4 Comparisons and Evaluations
Comparison to Developability of Triangle Meshes [Stein et al. 2018a].

There exist many deep and elegant methods for the computation

of developable surfaces, however most of them aim for user-driven

developable modeling and hence cannot fit a developable to a given

geometry. Of the few methods that aim for approximating an in-

put geometry with a developable surface, [Stein et al. 2018a] is

considered state of the art.

While their method is more general and can be applied directly to

any mesh embedded in 3D, its output is designed to create creases

along edges and hence is closely dependent on the mesh’s tessella-

tion and resolution. Fig. 20 illustrates this with a simple experiment:

(Aligned)

(Unaligned)

Ours (same λ)[Stein et al. 2018]Input

90º

Fig. 20. Comparison to [Stein et al. 2018a] on detecting developability. Both
methods reproduce the input cylinder when the mesh’s edges align with
the ruling. When the edges are misaligned with the ruling, their method
produces artifacts. Ours yields the same identical output as before.

while their method reproduces the cylinder when the mesh’s edges

are aligned with the cylinder’s principal curvature, once the cylin-

der is retesallated such that the mesh’s edges are rotated by 90

degrees, [Stein et al. 2018a] introduce a large amount of creases and

patches, as their energy does not detect non-edge-aligned rulings.

Our method produces the same result for both alignments, and we

explore this advantage further in Fig. 6.

The dependence on mesh tessellation is further exacerbated by

the extremely non-convex optimization of their objective, which

may lead to different local minima. In Fig. 22 we rotate the same

input (a noisy heightfield of a cone and cylinder) to 3 different

orientations and sample each one with our mesh, yielding different

alignment of principal curvatures with mesh edges. While this has

insignificant effect on our output, the output of [Stein et al. 2018a]

changes, with different creases for each orientation.

Comparison to L0 Mesh Denoising [He and Schaefer 2013]. Compet-

ing techniques for mesh denoising may be employed instead of ours.

Similarly to us [He and Schaefer 2013] suggest a sparsity-inducing

denoising technique for meshes. Their optimization problem is non-

convex and hence heavily relies on the initialization. In Fig. 21, the

oloid is rasterized and then sampled on our triangular grid. Our

method manages to reproduce the ground truth, while [He and

Schaefer 2013] yield a significantly different result.

Evaluations. Our method and discretization are extremely robust,

as shown by the following stress tests. In Fig. 6 we intentionally

misalign the underlying mesh’s edge-lines with the input surface’s

principal curvatures. Nonetheless, our method reproduces the un-

derlying surface without any artifacts, exhibiting its lack of bias to

the edge’s orientation.

In Fig. 21, other functions aside from the nuclear norm such

as the Frobenius norm, or simply the nuclear norm squared, will

not lead to a developable heightfield with sparse creases. We swap

the nuclear norm with the above two options in our optimization

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

Developability of Heightfields via Rank Minimization • 109:11

Original shape Input (simulated scan) Ours (min ||H||)
*

min ||H||
*

2

F
min ||H||

2
[He and Schaefer 2013]

Fig. 21. Comparison between the nuclear norm, the squared nuclear norm, and the Frobenius norm of the Hessian. The nuclear norm encourages developability
except in sparse creases, while the squared nuclear norm and the Frobenius norm smooth the shape uniformally, trading the sharp crease for a smooth
non-developable region.

Input
Ours

(rotated)
[Jakob et al. 2015]+

[Stein et al. 2018] (rotated)

Fig. 22. Comparison of our method with [Stein et al. 2018a] in recovering
piecewise developable geometry from a noisy developable heightfield. We
sample the heightfield with our triangular grid in 3 different orientations,
with [Stein et al. 2018a] producing different results for each one. Our output
is unaffected.

problem Equation (15), and attempt to recover the oloid heightfield

from a rasterized version of it. Both options opt to smooth out the

crease as well as the entire heightfield, sacrificing developability.

In Fig. 23, we show the robustness of our discretization and op-

timization to extreme levels of curvature, by feeding in highly-

oscillatory topographical heightfields with high frequency oscil-

lations. Our convex optimization is unaffected, and reproduces a

piecewise-smooth developable approximation to both inputs.

In Fig. 8 we show the effect of the one parameter of our method, λ,
which controls the weight of the data fidelity term versus the nuclear

norm term. The nuclear norm not only controls developabilty, but

also the number of creases, due to an observation similar to one in

[Stein et al. 2018a]: as resolution increases, the hexagonal stencil at

the creasewill produce aHessianwith increasingmaximal curvature
(large eigenvalue). Since the largest eigenvalue is included in the

nuclear norm our energy naturally penalizes creases. As shown in

Fig. 8, for low λ, the output is made up of a few developable pieces.

As λ increases, so does the number of developable pieces and the

deviation from developability, in favor of adherence to the input.

In Fig. 4 we show the effect of grid resolution on our method by

approximating a heightfield of the Stanford Bunny with a devel-

opable one. Our output is nearly identical for the lowest resolutions

and identical for the highest ones. This is due to 1) our convex opti-

mization problem having a unique solution, and 2) our discretization,

especially designed for agnosticism to tessellation parameters.

As shown in the statistics at the bottom of the image, our ADMM

algorithm uses an almost-constant number of iterations for all reso-

lutions, and our runtime scales linearly with mesh size. We find this

to be representative of the behaviour we consistently witnessed.

An important question is whether our optimization indeed yields

low-rank Hessians, and whether that indeed correlates to other

measures of discrete developability. To that end, we measure de-

velopability using one of the most popular metrics for discrete de-

velopability – the angle deficit at each vertex. To get a consistent

measure across mesh resolutions, we divide the angle deficit by the

vertex’s lumped area.

We visualize this discrete Gaussian curvature on Lucy in Fig. 25,

with curvature intensity visualized in blue.

5 15100-5

Our output
Input

Log histogram of
Gaussian curvature

t

In Table 1 we further measure discrete

gaussian curvature (дk), as well as the
direct underlying objective of our opti-

mization (κ2, the smaller eigenvalue of

the Hessian). For both input and out-

put, we show the percentage of vertices

with дk above an arbitrary threshold t
(see “dragon”’ histograms in the inset),

and the median κ2. In all cases the output has a very low κ2 and
only a small amount of vertices with дk exceeding the threshold.

Finally, in Fig. 24 we empirically study the effect the boundaries

have on the solution to our energy minimization problem. In this

didactic example inspired by [Stein et al. 2018b]’s Figure 8, we

observe that while our method is not completely independent of

the boundaries, their effect appears to be small.

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

109:12 • Silvia Sellán, Noam Aigerman, and Alec Jacobson

Input Our output Input Our output

Fig. 23. Our method robustly handles highly-oscillatory data. San Francisco Bay Area topography model (left) by Waleed Kadous under CC BY 4.0 and
pre-eruption Mt. Saint Helens model (right) by Jetty under CC BY-NC 4.0.

Input Output Output with boundaries

Fig. 24. Running our method on a noisy input (left) from which some holes
have been removed adds little distorsion to our solution (right) compared to
our method ran on the complete domain (middle).

Input Our output

Surface SurfaceGaussian Curvature Gaussian Curvature

0

10-3

Fig. 25. Our algorithm reduces Gaussian curvature, measured per each
vertex as its angle deficit divided by its 1-ring area. Model from the Stanford
3D Scanning Repository.

6 LIMITATIONS AND FUTURE WORK
We have presented a method inspired by compressed sensing for

recovering piecewise developable heightfields. Our convex opti-

mization yields a global optimum, and is robust to input resolution,

grid orientation, as well as noise. This enables us to perform devel-

opable denoising, as well as approximating arbitrary heightfields

with developable ones. Our approach has many potential uses, from

scanning of prints, approximating given models for metal-sheet

construction, and designing developable structures. One geomet-

rical application is to use the ruling lines - the eigenvectors of the

second fundamental form - to segment a piecewise developable into

its developable pieces.

Our main limitation is our restriction to heightfields. Moving to a

3Dmesh, there is no longer a proxy for the second fundamental form

which is linear in the variables, and we cannot formulate a convex

problem. Thus our immediate future goal is to find alternative ways

to transfer this method to 3D. One immediate approach to consider

is to run our method simultaneously from multiple views.

A second limitation stems from the density of the space of piece-

wise developable surfaces; simply considering that any mesh is

piecewise developable entails there is a piecewise developable an ep-

silon away from any given surface, and hence our recovery problem

can seem as ill-posed. It is due to our optimization that penalizes

creases that, e.g., piecewise flat surfaces do not emerge. If the noise

is too low-frequency with respect to the signal, we may recover a

suboptimal developable reconstruction. This is the case in Fig. 26,

in which the voxelization artifact is low frequency enough to cause

our method to not reconstruct the smooth leg.

From the theoretical perspective, we note that our convex pro-

gram is still a relaxation, which we have not proven is exact: it
may be that there are piecewise developable height fields that are

closer to the input than our output. To prove tightness requires

compressed sensing machinery which is outside the scope of this

paper, and we mark it as important future work.

Finally, preliminary segmentation results (see

inset, which uses the output of Fig. 8) ob-

tained with a flood-fill algorithm based on

our rank proxy ∥H ∥∗ are promising towards

making the application of our method to fab-

rication more direct.

We hope that our contribution of framing

developability as a rank minimization prob-

lem can give a novel perspective to this famil-

iar area of research in Computer Graphics,

and that the many fabrication pipelines that rely on developability

can be enriched by our work.

ACKNOWLEDGMENTS
This project is funded in part byNSERCDiscovery (RGPIN2017–05235,

RGPAS–2017–507938), New Frontiers of Research Fund (NFRFE–201),

the Ontario Early Research Award program, the Canada Research

Chairs Program, the Fields Centre for Quantitative Analysis and

Modelling and gifts by Adobe Systems, Autodesk and MESH Inc.

We thank Mirela Ben-Chen, Oded Stein and Derek Liu for their

insightful conversation and advice; Herng Yi Cheng and Abhishek

Madan for producing origami examples;Wenzheng Chen for his help

with the 3D scanner setup in Fig. 10; Josh Holinaty, Naseem Hrab

and Owlkids for allowing us to use their book in Fig. 3; and Honglin

Chen, John Kanji, Ruiqi Wang and Rahul Arora for proofreading.

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

Developability of Heightfields via Rank Minimization • 109:13

Original shape Input (simulated scan) Output

Fig. 26. Our method does not always recover the correct developable: the
noise artifacts in the legs of the Tokyo Tower are preserved after running
our method. 3D model by Michael Hill under CC BY 4.0.

Table 1. Quanitative evaluation of our method. For input and output of
each example in the paper, we show the median of κ2, denoted κ̃2 – the
smaller-magnitude eigenvalue of the Hessiann and the target objective our
convex optimization aims to minimize. Likewise, we inluce a developability
metric we don’t directly optimize – K – the discrete Gaussian curvature,
measured by angle deficit over vertex area. We show the percentage of
vertices with curvature below a threshold t (see inset histograms)

Model K > t Input K > t Ours κ̃2 Input κ̃2 Ours
bergher 28.9 % 5.3 % 12.2 0.51

dragon 60.2 % 2.8 % 63.7 0.47

gargoyle 24.6 % 4.4 % 14.9 0.13

lucy 38.8 % 7.0 % 24.7 1.13

range 34.5 % 1.1 % 13.6 0.02

woman 18.2 % 9.5 % 17.1 0.05

bunny 7.9 % 1.1 % 2.1 0.06

einstein 35.1 % 2.9 % 68.4 0.57

fandisk 2.6 % 1.5 % 0.1 0.03

book 23.7 % 2.7 % 19.7 0.07

notepad 12.3 % 8.1 % 11.4 0.03

paper 95.9 % 1.9 % 899.7 0.04

disney 35.1 % 4.3 % 7373.3 0.20

tower 27.2 % 5.8 % 0.0 0.26

bench 27.4 % 2.1 % 0.0 0.33

oloid 27.4 % 1.3 % 0.0 0.04

bilbao 31.3 % 10.1 % 0.0 1.22

REFERENCES
Jascha Achenbach, Eduard Zell, and Mario Botsch. 2015. Accurate face reconstruction

through anisotropic fitting and eye correction. (2015).

Noam Aigerman and Yaron Lipman. 2013. Injective and Bounded Distortion Mappings

in 3D. ACM Trans. Graph. 32, 4, Article Article 106 (July 2013), 14 pages. https:

//doi.org/10.1145/2461912.2461931

Gerasimos Arvanitis, Aris S Lalos, and Konstantinos Moustakas. 2019. Denoising of

dynamic 3D meshes via low-rank spectral analysis. Computers & Graphics (2019).
Pengbo Bo and Wenping Wang. 2007. Geodesic-Controlled Developable Surfaces for

Modeling Paper Bending. Comput. Graph. Forum 26, 3 (2007), 365–374.

Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. 2013. Sparse Iterative Closest

Point. Comput. Graph. Forum 32, 5 (2013), 1–11.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011.

Distributed optimization and statistical learning via the alternating direction method

of multipliers. Foundations and Trends® in Machine learning 3, 1 (2011), 1–122.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization.
Derek Bradley. 2006. Deforming Developable Surfaces.

Christopher Brandt and Klaus Hildebrandt. 2017. Compressed vibration modes of

elastic bodies. Computer Aided Geometric Design 52 (2017), 297–312.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. 2011. Robust principal

component analysis? J. ACM 58, 3 (2011), 11:1–11:37.

Emmanuel J Candès and Michael B Wakin. 2008. An introduction to compressive

sampling [a sensing/sampling paradigm that goes against the common knowledge

in data acquisition]. IEEE signal processing magazine 25, 2 (2008), 21–30.
H.-Y. Chen, I.-K. Lee, Stefan Leopoldseder, Helmut Pottmann, Thomas Randrup, and

Johannes Wallner. 1999. On Surface Approximation Using Developable Surfaces.

Graphical Models and Image Processing 61, 2 (1999), 110–124.

Richard Courant and David Hilbert. 2008. Methods of Mathematical Physics: Partial
Differential Equations. John Wiley & Sons.

José Paulo R. de Lima and Helton Hideraldo Bíscaro. 2015. Compressive Representation

of Three-dimensional Models. SBC Journal on Interactive Systems (2015).
Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer, and

Marie-Paule Cani. 2006. Virtual Garments: A Fully Geometric Approach for Clothing

Design. Comput. Graph. Forum 25, 3 (2006), 625–634.

Stephan Didas and Joachim Weickert. 2004. Higher order variational methods for noise

removal in signals and images. Saarbrücken, Saarland Universitesi (2004).
Levi Dudte, Etienne Vouga, Tomohiro Tachi, and Lakshminarayanan Mahadevan. 2016.

Programming curvature using origami tessellations. Nature Materials 15 (01 2016).
Maryam Fazel, Haitham Hindi, Stephen P Boyd, et al. 2001. A rank minimization

heuristic with application to minimum order system approximation. In Proceedings
of the American control conference, Vol. 6. Citeseer, 4734–4739.

William H Frey. 2004. Modeling buckled developable surfaces by triangulation.

Computer-Aided Design 36, 4 (2004), 299–313.

Lei He and Scott Schaefer. 2013. Mesh Denoising via L0 Minimization. ACM Trans.
Graph. 32, 4, Article Article 64 (July 2013), 8 pages. https://doi.org/10.1145/2461912.

2461965

Michael Hofer, Boris Odehnal, Helmut Pottmann, Tibor Steiner, and Johannes Wallner.

2005. 3D Shape Recognition and Reconstruction Based on Line Element Geometry.

In Proc. ICCV. 1532–1538.
Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun.

2014. L1-Based Construction of Polycube Maps from Complex Shapes. ACM Trans.
Graph. (2014).

Alec Jacobson et al. 2016. gptoolbox: Geometry Processing Toolbox.

http://github.com/alecjacobson/gptoolbox.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing

library. http://libigl.github.io/libigl/.

Dan Julius, Vladislav Kraevoy, and Alla Sheffer. 2005. D-charts: Quasi-developable

mesh segmentation. In Computer Graphics Forum, Vol. 24. Wiley Online Library,

581–590.

Amaury Jung, Stefanie Hahmann, Damien Rohmer, Antoine Bégault, Laurence

Boissieux, and Marie-Paule Cani. 2015. Sketching Folds: Developable Surfaces

from Non-Planar Silhouettes. ACM Trans. Graph. 34, 5 (2015), 155:1–155:12.
Yannick L. Kergosien, Hironobu Gotoda, and Tosiyasu L. Kunii. 1994. Bending and

creasing virtual paper. IEEE Computer Graphics and Applications 14, 1 (1994), 40–48.
Martin Kilian, Simon Flöry, Zhonggui Chen, Niloy J Mitra, Alla Sheffer, and Helmut

Pottmann. 2008. Curved folding. In ACM transactions on graphics (TOG), Vol. 27.
ACM, 75.

Kai-Wah Lee and Pengbo Bo. 2016. Feature curve extraction from point clouds via

developable strip intersection. J. Computational Design and Engineering 3, 2 (2016),

102–111.

Stefan Leopoldseder and Helmut Pottmann. 1998. Approximation of developable

surfaces with cone spline surfaces. Computer-Aided Design 30, 7 (1998), 571–582.

Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer. 2007.

Parameterization-free projection for geometry reconstruction. ACM Trans.
Graph. 26, 3 (2007), 22.

Hsueh-Ti Derek Liu and Alec Jacobson. 2019. Cubic Stylization. ACM Trans. Graph.
(2019).

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J Gortler. 2008. A local/global

approach to mesh parameterization. In Computer Graphics Forum, Vol. 27. Wiley

Online Library, 1495–1504.

Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang.

2006. Geometric modeling with conical meshes and developable surfaces. ACM
Trans. Graph. 25, 3 (2006), 681–689.

Xuequan Lu, Scott Schaefer, Jun Luo, Lizhuang Ma, and Ying He. 2018. Low

Rank Matrix Approximation for Geometry Filtering. CoRR abs/1803.06783 (2018).

arXiv:1803.06783 http://arxiv.org/abs/1803.06783

Tomohiko Mukai and Shigeru Kuriyama. 2016. Efficient dynamic skinning with low-

rank helper bone controllers. ACM Trans. Graph. (2016).
Rahul Narain, Tobias Pfaff, and James F. O’Brien. 2013. Folding and crumpling adaptive

sheets. ACM Trans. Graph. 32, 4 (2013), 51:1–51:8.
Barrett O’Neill. 1966. Elementary differential geometry.

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

https://doi.org/10.1145/2461912.2461931
https://doi.org/10.1145/2461912.2461931
https://doi.org/10.1145/2461912.2461965
https://doi.org/10.1145/2461912.2461965
http://arxiv.org/abs/1803.06783
http://arxiv.org/abs/1803.06783

109:14 • Silvia Sellán, Noam Aigerman, and Alec Jacobson

Maodong Pan, Weihua Tong, and Falai Chen. 2016. Compact implicit surface recon-

struction via low-rank tensor approximation. Computer-Aided Design 78 (2016),

158–167. https://doi.org/10.1016/j.cad.2016.05.007

Mathieu Perriollat and Adrien Bartoli. 2013. A computational model of bounded devel-

opable surfaces with application to image-based three-dimensional reconstruction.

Journal of Visualization and Computer Animation 24, 5 (2013), 459–476.

Martin Peternell. 2004. Developable surface fitting to point clouds. Computer Aided
Geometric Design 21 (2004), 785–803.

Helmut Pottmann and Gerald E. Farin. 1995. Developable rational Bézier and B-spline

surfaces. Computer Aided Geometric Design 12, 5 (1995), 513–531.

Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Wenping

Wang, Niccolo Baldassini, and Johannes Wallner. 2008. Freeform surfaces from

single curved panels. ACM Trans. Graph. 27, 3 (2008), 76.
Helmut Pottmann and Johannes Wallner. 1999. Approximation algorithms for devel-

opable surfaces. Computer Aided Geometric Design 16, 6 (1999), 539–556.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018a. Discrete

geodesic nets for modeling developable surfaces. ACM Transactions on Graphics
(ToG) 37, 2 (2018), 16.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018b. The shape

space of discrete orthogonal geodesic nets. In SIGGRAPH Asia 2018 Technical Papers.
ACM, 228.

Michael Rabinovich, TimHoffmann, and Olga Sorkine-Hornung. 2019. Modeling curved

folding with freeform deformations. ACM Transactions on Graphics (TOG) 38, 6
(2019), 170.

P Redont. 1989. Representation and deformation of developable surfaces. Computer-
Aided Design 21, 1 (1989), 13 – 20.

Kenneth Rose, Alla Sheffer, Jamie Wither, Marie-Paule Cani, and Boris Thibert. 2007.

Developable surfaces from arbitrary sketched boundaries. In SGP’07-5th Eurographics
Symposium on Geometry Processing. Eurographics Association, 163–172.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. 1992. Nonlinear total variation based

noise removal algorithms. Physica D: Nonlinear Phenomena 60, 1 (1992), 259 – 268.

Raif M. Rustamov. 2011. Multiscale Biharmonic Kernels. Comput. Graph. Forum 30, 5

(2011).

Camille Schreck, Damien Rohmer, Stefanie Hahmann, Marie-Paule Cani, Shuo Jin,

Charlie C. L.Wang, and Jean-Francis Bloch. 2015. NonsmoothDevelopable Geometry

for Interactively Animating Paper Crumpling. ACM Trans. Graph. 35, 1 (2015), 10:1–
10:18.

Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012. Flexible

developable surfaces. In Computer Graphics Forum, Vol. 31. Wiley Online Library,

1567–1576.

Oded Stein, Eitan Grinspun, and Keenan Crane. 2018a. Developability of Triangle

Meshes. ACM Trans. Graph. 37, 4 (2018).
Oded Stein, Eitan Grinspun, Max Wardetzky, and Alec Jacobson. 2018b. Natural Bound-

ary Conditions for Smoothing in Geometry Processing. ACM Trans. Graph. (2018).
B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2017. OSQP: An

Operator Splitting Solver for Quadratic Programs. ArXiv e-prints (Nov. 2017).

arXiv:math.OC/1711.08013

Jacob Subag and Gershon Elber. 2006. Piecewise Developable Surface Approximation

of General NURBS Surfaces, with Global Error Bounds. In Proc. GMP.
Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. 2016. Inter-

active design of developable surfaces. ACM Transactions on Graphics (TOG) 35, 2
(2016), 12.

Etienne Vouga, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann. 2012.

Design of Self-supporting Surfaces. ACM Trans. Graph. (2012).
Hui Wang, Davide Pellis, Florian Rist, Helmut Pottmann, and Christian Müller. 2019.

Discrete geodesic parallel coordinates. ACM Transactions on Graphics (TOG) 38, 6
(2019), 173.

MingqiangWei, Jin Huang, Xingyu Xie, Ligang Liu, JunWang, and Jing Qin. 2019. Mesh

Denoising Guided by Patch Normal Co-Filtering via Kernel Low-Rank Recovery.

IEEE TVCG 25, 10 (2019).

Jie Zhang, Junjie Cao, Xiuping Liu, Jun Wang, Jian Liu, and Xiquan Shi. 2013. Point

cloud normal estimation via low-rank subspace clustering. Computers & Graphics
37, 6 (2013), 697–706.

Juyong Zhang, Bailin Deng, Yang Hong, Yue Peng, Wenjie Qin, and Ligang Liu. 2019.

Static/Dynamic Filtering for Mesh Geometry. IEEE TVCG (2019).

Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patanè, Sofien Bouaziz, Kai Hormann,

and Ligang Liu. 2014. Local Barycentric Coordinates. ACM Trans. Graph. 33 (2014).

A RANK EQUIVALENCY PROOF
Lemma A.1. Let z : R2 −→ R be a continuous, twice-differentiable

function and letM be the two-dimensional surface defined by the
graph of z. Let p ∈ M be a point of the form (x0,y0, z(x0,y0)). Then,
the second fundamental form ofM at p when seen as a matrix IIp is
proportional to the Hessian matrix Hz (x0,y0).

Proof. M is parametrized by r(x ,y) = (x ,y, z(x ,y)). The second
fundamental form in matrix form is given by

II =

(
L M
M N

)
, (21)

where

L =
∂2r
∂x2
· n , M =

∂2r
∂x∂y

· n , N =
∂2r
∂y2
· n , (22)

and n = (n1,n2,n3) is the normal vector. In our case this becomes

II = n3

(
∂2z
∂x 2

∂2z
∂x∂y

∂2z
∂y∂x

∂2z
∂y2

)
, (23)

which is nothing but

II = n3Hz . (24)

Sincen3 cannot be zero on a surface described as a graph, this proves
the lemma.

□

B BEST FIT HESSIAN AS A LINEAR TRANSFORMATION
The best fit coefficients of the quadratic functions minimize

min

c ∈R
g∈R2

H=H⊤∈R2×2

1

2

7∑
i=1

c4 + g⊤(xi − x4) + 1

2

(xi − x4)⊤H(xi − x4) − zi

2 ,
which can be written as

min

c∈R6
1

2

∥Ac − z∥2F (25)

where A ∈ R7×6 contains constant coefficients that ultimately do

not even depend on which vertex is considered (only h), and z stack
the seven involved height values in order. The solution is revealed

via solving the normal equations:

c = (A⊤A)−1A︸ ︷︷ ︸
B

z, (26)

where the fixed local stencil matrix B ∈ R6×7 is revealed to be:

B =
1

6h2

©«

0 0 3 −6 3 0 0

2 2 −1 −6 −1 2 2

−2
√
3 2

√
3 0 0 0 2

√
3 −2

√
3

−h h −2h 0 2h −h h
√
3h

√
3h 0 0 0 −

√
3h −

√
3h

0 0 0 6h2 0 0 0

ª®®®®®®®¬
. (27)

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

https://doi.org/10.1016/j.cad.2016.05.007
http://arxiv.org/abs/math.OC/1711.08013

Developability of Heightfields via Rank Minimization • 109:15

C WRITING OUR MINIMIZATION AS AN SDP
Let us introduce the auxiliary symmetric matrix variables Xi =

X⊤i ,Yi = Y⊤i ∈ R
2×2

for each interior vertex and rewrite the prob-

lem as a semi-definite program:

min

z,X,Y
λ

∑
i ∈I∪∂I

∥zi − z̃i ∥
2 +

∑
i ∈I

trXi + trYi , (28)

subject to Cz = h,

and hixy = h
i
yx ∀i ∈ I (29)

and

Xi

hixx hixy
hixy hiyy

hixx hixy
hixy hiyy

Yi

 ≽ 0∀ i ∈ I,

where M ≽ 0 indicates that the matrix M is positive semi-definite.

D CLOSED FORM SOLUTION TO THREE-VARIABLE
SEMI-DEFINITE PROGRAM

In Equation (18), we need to solve (many) small semi-definite pro-

grams of the form:

H∗ = argmin

H∈R2×2
∥H∥∗ +

ρ

2

∥H − G∥2F , (30)

where the matrix G ∈ R2×2 (gathering the relevant terms involving

C, z, u in Equation (18)) is constant with respect to the unknowns

in H.
Let G = U ΣVT

be the Singular Value Decomposition of G, with
Σ = diag(σ1,σ2) ∈ R

2×2
. LetA be an optimum of the above program.

Consider the equivalent (i.e., has the same set of optimal solutions)

problem

H∗ = argmin

H∈R2×2, ∥H∥∗=∥A∥∗

ρ

2

∥H − G∥2F . (31)

Retracing the proof of Theorem 1 in [Aigerman and Lipman 2013],

letting the space

{
H ∈ R2×2, ∥H∥∗ = ∥H∗∥∗

}
replace the space de-

noted there as Tk (the proof applies to any space of matrices defined

in terms of singular values), we get that A’s singular vectors are the
same as G’s,

A = UDVT , (32)

for some unknown diagonal matrix D.
PluggingUDVT

instead of H in the above minimization, and us-

ing both norms’ invariance to multiplication by orthogonal matrices,

we get that the optimal D is the diagonal matrix minimizing

D∗ = argmin

D
∥D∥∗ +

ρ

2

∥D − Σ∥2F . (33)

Writing D = diag(d1,d2), we consider each entry independently:

d∗i = argmin

di
|di | +

ρ

2

|di − σi |, (34)

whose minimum is simply:

d∗i = max

(
σi −

1

ρ , 0
)
. (35)

To summarize, the optimal H∗ is found by computing the singular

value decomposition of G, computing the diagonal entries of D∗

according to Equation (35), and then constructing H∗ = UD∗V⊤.
In our optimization, G will always be symmetric by construction,

so U = V and the resulting H∗ will be symmetric, fulfilling the

constraint that hxy = hyx .

ACM Trans. Graph., Vol. 39, No. 4, Article 109. Publication date: July 2020.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Compressed Sensing and Rank Minimization
	2.2 Computational Developability

	3 Developability as Hessian Rank Minimization
	3.1 Discretization

	4 Piecewise Developable Fitting
	4.1 Tailor-Made ADMM Optimization

	5 Results
	5.1 Recovering Scanned Developables
	5.2 Developable Approximations to Heightfields
	5.3 Design of Developable Heightfields
	5.4 Comparisons and Evaluations

	6 Limitations and Future Work
	Acknowledgments
	References
	A Rank Equivalency Proof
	B Best fit Hessian as a linear transformation
	C Writing our minimization as an SDP
	D Closed Form Solution to Three-Variable Semi-Definite Program

