MESH MATH AND BEYOND

On creating, storing and using geometry

Silvia Sellán
@sellan_s
Fellow geometry people: In (the magnificent) "This is me trying", Taylor Swift says "I was so ahead of the curve, the curve became a sphere". What does this mean?

MESH MATH AND BEYOND

On creating, storing and using geometry

NICETO MEETYOU!

"Geometry Processing is a subfield of biology"

- Alec Jacobson

ORGANISM HAVE A LIFE CYCLE

SHAPES HAVE A LIFE CYCLETOO

*terms and conditions apply

SHAPES HAVE A LIFE CYCLETOO

SHAPES HAVE A LIFE CYCLETOO

A shape dies

Overwatch - Tracer 3D print model - time-lapse sculpt, by "Printed Obsession", Youtube

SHAPES HAVE A LIFE CYCLETOO

SHAPES HAVE A LIFE CYCLETOO

SHAPES HAVE A LIFE CYCLETOO

SHAPES HAVE A LIFE CYCLETOO

A shape is born

How devs break bones to make animation feel right, by "Jenna Stoeber (Polygon)", Youtube

WHATYOU'VE SEEN SO FAR

Normal Vector

- The normal vector \mathbf{n} is the unit-length perpendicular vector to a triangle and positively oriented.

WHATYOU'VE SEEN SO FAR

So far, you've seen stuff happening to shapes

And so far, shape has meant "triangle mesh"

Reality is much more complicated than that

SHAPE REPRESENTATIONS

WHAT'S WRONG WITH MESHES?

REASON I: NOT EVERY SHAPE IS BORN AS A MESH

REASON II:"STUFF" CAN BE HARDTO DO ON MESHES

SHAPE REPRESENTATIONS IN 2D

SHAPE REPRESENTATIONS IN 2D

2D'S VERSION OF "SURFACE" IS A CURVE

...HOW DO I STORE A CURVE ON A COMPUTER?

AN OPTION: FINITE SET OF POINTS

AN OPTION: FINITE SET OF POINTS

$$
p_{5}=[0.722,0.852]
$$

$$
\begin{aligned}
& p_{3}=[0.456,0.420] \\
& p_{2}=[0.322,0.28] \\
& p_{1}=[0,0]
\end{aligned}
$$

AN OPTION: FINITE SET OF POINTS

AN OPTION: FINITE SET OF POINTS

Easy to store

AN OPTION: FINITE SET OF POINTS

Easy to store

Connectivity?

AN OPTION: FINITE SET OF POINTS

AN OPTION: FINITE SET OF POINTS

x
Easy to store

Connectivity?

AN OPTION: FINITE SET OF POINTS

Easy to store

Connectivity?

AN OPTION: FINITE SET OF POINTS

Easy to store

Connectivity?

AN OPTION: FINITE SET OF POINTS

Easy to store

Connectivity?

SHAPE REPRESENTATIONS

SHAPE REPRESENTATIONS

IMPROVING ON A POINT CLOUD

Easy to store

Connectivity?

AN OPTION: POINTS + CONNECTIVITY

$$
\begin{gathered}
{[0,0]} \\
{[0.322,0.28]} \\
{[0.456,0.420]}
\end{gathered}
$$

[0.662,0.4435]
[0.722,0.852]

AN OPTION: POINTS + CONNECTIVITY

$1[0,0]$
2[0.322,0.28]
$3[0.456,0.420]$
4[0.662,0.4435]
5[0.722,0.852]

AN OPTION: POINTS + CONNECTIVITY

AN OPTION: POINTS + CONNECTIVITY

AN OPTION: POINTS + CONNECTIVITY

AN OPTION: POINTS + CONNECTIVITY

$1[0,0]$	$1 \leftrightarrow 2$
$2[0.322,0.28]$	
$3[0.456,0.420]$	\sim
$4[0.662,0.4435]$	
$5[0.722,0.852]$	$4 \leftrightarrow 4$

AN OPTION: POINTS + CONNECTIVITY

AN OPTION: POLYLINE

AN OPTION: POLYLINE

Easy to store and plot

AN OPTION: POLYLINE

, Easy to store and plot
 Easy to query

AN OPTION: POLYLINE

Easy to query

Easy intersections

AN OPTION: POLYLINE

Easy to store and plot

Easy to query

Easy intersections

AN OPTION: POLYLINE

Easy to store and plot

Easy to query

Easy intersections

AN OPTION: POLYLINE

Easy to store and plot

Easy to query

Easy intersections

AN OPTION: POLYLINE

AN OPTION: POLYLINE

AN OPTION: POLYLINE

AN OPTION: POLYLINE

AN OPTION: POLYLINE

, Easy to store and plot
, Easy to query

Easy intersections
Differential quantities?
\geqslant Looks bad!

AN OPTION: POLYLINE

, Easy to store and plot , Easy to query , Easy intersections

Differential quantities?
Looks bad!

AN OPTION: POLYLINE

, Easy to store and plot
, Easy to query

- Easy intersections

Differential quantities?
Looks bad!

AN OPTION: POLYLINE

, Easy to store and plot , Easy to query , Easy intersections

Differential quantities?
Looks bad!

AN OPTION: POLYLINE

, Easy to store and plot
, Easy to query

- Easy intersections

Differential quantities?
Looks bad!

AN OPTION: POLYLINE

, Easy to query

Easy intersections
Differential quantities?
Looks bad!

AN OPTION: POLYLINE

$$
\gamma(t)=(\cos (t), \sin (t)) \quad t \in[0,2 \pi)
$$

, Easy to store and plot , Easy to query , Easy intersections

D Differential quantities?
$\$$ Looks bad!

AN OPTION: POLYLINE

, Easy to store and plot
, Easy to query

Easy intersections

x
Differential quantities?
x
Looks bad! or
Needs many points!

SHAPE REPRESENTATIONS

SHAPE REPRESENTATIONS

BEYOND POLYLINES

Easy to store and plot
, Easy to query

Easy intersections
x
Differential quantities?
Looks bad! or

BEYOND POLYLINES

BEYOND POLYLINES

Maybe a polynomial?

x
x
Differential quantities?
Looks bad! or
Needs many points!

BEYOND POLYLINES

Best fit degree 4 polynomial

x
x
Differential quantities
Looks bad! or
Needs many points!

BEYOND POLYLINES

Best fit degree 4 polynomial

BEYOND POLYLINES

- Differential quantities

Looks bad! or

BEYOND POLYLINES

BEYOND POLYLINES

BEYOND POLYLINES

Piecewise polynomial?

BEYOND POLYLINES

BEYOND POLYLINES

it

Piecewise polynomial?

BEYOND POLYLINES

BEYOND POLYLINES

$=$

BEYOND POLYLINES

BEYOND POLYLINES

Piecewise polynomial + consistent derivatives?

SPLINES

A spline!

SPLINES

-

A spline!

SPLINES

SPLINES

SPLINES

SPLINES

SPLINES

Font as a B-spline curve

Data: G.Farin, Curves and Surfaces for Computer Aided Geometric Design

SPLINES

SPLINES

SPLINES

SPLINES

Easy to query
 Easy intersections

Differential quantities?
Looks bad! or
Needs many points!

SPLINES

Easy to query

Easy intersections

Differential quantities?
Looks bad! or Needs many points!

SPLINES

Easy to query

Easy intersections

Looks great
With few points

SPLINES

SPLINES

SPLINES

SPLINES

SHAPE REPRESENTATIONS

Points + Connectivity + Piecewise flat interpolation

Points + Connectivity + Polynomial interpolation

CLIPasso: Semantically-Aware Object Sketching
Yael Vinker ${ }^{2,1}$ Ehsan Pajouheshgar ${ }^{1}$ Jessica Y. Bo ${ }^{1} \quad$ Roman Christian Bachmann ${ }^{1}$ Amit Haim Bermano ${ }^{2}$ Daniel Cohen-Or ${ }^{2}$ Amir Zamir ${ }^{1}$ Ariel Shamir ${ }^{3}$
${ }^{1}$ Swiss Federal Institute of Technology (EPFL) $\quad{ }^{2}$ Tel-Aviv University $\quad{ }^{3}$ Reichman University
h=tps://clipasso.github.io/clipasso/

Abstraction is at the heart of sketching due to the simple and minimal nature of line drawings. Abstraction en-
tails identifing the essential visual properties of an obtails identifying the essential visual properties of an object or scene, which requires semantic understanding and prior knowledge of high-level concepts. Abstract depictions are therefore challenging Jor artists, and even more
so for machines. We present CLIPasso, an object sketchso for machines. We present CLIPasso, an object sketching method that can achieve different levels of abstraction, guided by geometric and semantic simplifications. While sketch generation methods often rely on explicit sketch CLIP (Contrastive-Language-Image-Pretraining) to distill semantic concepts from sketches and images alike. We de fine a sketch as a set of Bézier curves and use a differenfine a sketch ass a set of Bezier curves and use a differen-
tiable rasterizer to optimize the parameters of the curves directly with respect to a CLIP-based perceptual hass. The abstraction degree is controlled by varying the number of strokes. The generated sketches demonstrate multiple levels of abstraction while maintaining recognizability, underlying structure, and essential visuat components of the subject drawn.
ing ideas, concepts, and actions $[10,15,18,43]$. As sketches ing ideas, concepts, and actions [$10,15,18,43]$. As sketches consist of only strokes, and often only a limited number of
strokes, the process of abstraction is central to sketching strokes, the process of absiraction is central to sketching. An artist must make representational decisions to choose
key visual features of the subject drawn to capture the relkey visual features of the subject drawn to capture the rel-
evant information she wishes to express, while omitting evant information she wishes to express, while omitting
(many) others [6]. For example, in the famous "Le Taureau" series (Figure 2), Picasso depicts the progressive abstraction of a bull. In this series of lithographs, the artist transforms a bull from a concrete, fully rendered, anatomical drawing, into a sketch composition of a few lines that still manages to capture the essence of the bull.
In this paper, we pose the question - can computer renderings imitate such a process of sketching abstraction, con verting a photograph from a concrete depiction to an abstract one?
Today, machines can render realistic sketches simply by applying mathematical and geometric operations to an input photograph [5,42]. However, creating abstractions is more difficult for machines to achieve. The abstraction process suggests that the artist selects visual features that capture

EXPLICIT SHAPE REPRESENTATIONS

Points + Connectivity + Piecewise flat interpolation

Points + Connectivity + Polynomial interpolation

IMPLICIT SHAPE REPRESENTATIONS

IMPLICIT SHAPE REPRESENTATIONS

$$
f(x, y)=x^{2}+y^{2}-1
$$

IMPLICIT SHAPE REPRESENTATIONS

$$
f(x, y)=x^{2}+y^{2}-1
$$

IMPLICIT SHAPE REPRESENTATIONS

$$
f(x, y)=0
$$

$$
f(x, y)=\max (x, y)-1
$$

IMPLICIT SHAPE REPRESENTATIONS

Positive values outside shape

$$
f(x, y)=\max (x, y)-1
$$

Negative values inside shape

IMPLICIT SHAPE REPRESENTATIONS

Positive values outside shape

$$
f(x, y)=\max (x, y)-1
$$

IMPLICIT SHAPE REPRESENTATIONS

$$
f_{1}(x, y)=\max (x, y)-1
$$

IMPLICIT SHAPE REPRESENTATIONS

$$
f_{2}(x, y)=x^{2}+y^{2}-1
$$

IMPLICIT SHAPE REPRESENTATIONS

$$
f_{\text {union }}=\min \left(f_{1}, f_{2}\right)
$$

IMPLICIT SHAPE REPRESENTATIONS

$$
f_{\text {intersection }}=\max \left(f_{1}, f_{2}\right)
$$

$$
\begin{array}{rrr}
+ & + \\
+ & - & + \\
& + & +
\end{array}
$$

IMPLICIT SHAPE REPRESENTATIONS

$$
f_{\text {subtraction }}=\max \left(f_{1},-f_{2}\right)
$$

IMPLICIT SHAPE REPRESENTATIONS

Easy boolean operations

IMPLICIT SHAPE REPRESENTATIONS

IMPLICIT SHAPE REPRESENTATIONS

Turn geometry into image

IMPLICIT SHAPE REPRESENTATIONS

Use image processing instead of geometry processing

IMPLICIT SHAPE REPRESENTATIONS

Use image processing instead of geometry processing

IMPLICIT SHAPE REPRESENTATIONS

Use machine learning

IMPLICIT SHAPE REPRESENTATIONS

Use machine learning
Easy boolean operations

IMPLICIT SHAPE REPRESENTATIONS

Use machine learning

Easy boolean operations
. .almost everything else

SHAPE REPRESENTATIONS

Implicit

Points + Connectivity + Piecewise flat interpolation

Points + Connectivity + Polynomial interpolation

Implicit function

Signed distance function

Later today...

SHAPE REPRESENTATIONS IN 2D

Points + Connectivity + Piecewise flat interpolation

Points + Connectivity + Polynomial interpolation

WHAT'S THE PLAN NOW?

WHAT'S THE PLAN NOW?

- 201_polylines
- 202_wrappers
[203_basic_mesh_modeling
- 204_timing
- 205_mex
- 206_mesh_booleans
- 207_implicit_surfaces

WHAT'S THE PLAN NOW?

WHAT'S THE PLAN NOW?

```
[ 201_polylines
- 202_wrappers
```



```
The boring one
[ 203_basic_mesh_modeling
- 204_timing
- 205_mex
[ 206_mesh_booleans
```

```207_implicit_surfaces
```


WHAT'S THE PLAN NOW?

WHAT'S THE PLAN NOW?

- 201_polylines
- 202_wrappers
[203_basic_mesh_modeling
- 204_timing
- 205_mex
- 206_mesh_booleans
- 207_implicit_surfaces

The boring one

Requires installing stuff
 For reference, no need to do it today

WHAT'S THE PLAN NOW?

203_basic_mesh_modeling204_timing205_mex
[206_mesh_booleans207_implicit_surfaces

WHAT'S THE PLAN NOW?

The interesting one
202_wrappers
It's meant to be hard!203_basic_mesh_modeling204_timing

205_mex
[. 206_mesh_booleans207_implicit_surfaces

ح $\boldsymbol{\sim}$
Error using error

WHATTO DO V.…
 just between us

; HARD?
did you know that "Loop subdivision" was named after a Charles Loop, and not just a loop \log odedstein 10:33

Yes of course
silviasellan 16:39
help
odedstein 16:40
In general, or you need help now?
silviasellan 16:40
now, if youre not busy
silviasellan 12:28 want to proofread?
\qquad odedstein 12:28 Your asia submission? sure
silviasellan 18:36
\$o silviasellan
so
Direct Message | Jan 12th, 2020 |View conversati

Do silviasellan
 much

Direct Message | Jan 12th, 2020 |View conversatic

> 10 silviasellan
> stress
> Direct Message | Jan 12th, 2020 | View conversation
odedstein 18:36
Do you want me to get you something
silviasellan 17:04
WHY IS MY BLENDER NOT WORKING
0
silviasellan 17:11
lincoln.png v

why are my shadows so ugly
they shouldnt be so sharp with environment lighting

odedstein 17:21
Is it too bright?
Is your material overtly shiny?
silviasellan 11:28 can I ask for your advice on something?

May 9th, 2020 ~ Sure
silviasellan 11:07
i'd love to know your thoughts Keynote Documentshape-representations.k 88 MB Keynote Document
odedstein 11:07
will look at it in the evening

Do
silviasellan 11:06
I have a scene with, say, 20 objects and I want to render 15 of them with wireframe, but 5 of them without it is there an easy way of doing this?
odedstein 11:07
There is a wireframe node in the cycles sh
Like when you make a material
play around with that
silviasellan 11:07
there you go
thank you oded
silviasellan ${ }_{15: 17}$
maybe you know how to solve this
if I have a .blend file
with like massive objs
and then I delete the objs from the scene
the .blend file size does not go downodedstein 15:18
have you saved and quit?

	201_polylines
202_wrappers	
	203_basic_mesh_modeling
	205_timing
	206_mex

MESH MATH AND BEYOND

On creating, storing and using geometry
"I was so ahead of the curve, the curve became a sphere"

- Taylor Swift, This is me trying

Option I: Surface of revolution

cleverlittleteapot $\cdot 2 \mathrm{yr}$. ago
I believe that she is saying was ahead of the curve. She was a mover and shaker. Remember when she was described as the music industry and 1989 was so highly regarded.

Things then changed. They stopped being 2 dimensional. A sphere is 3 dimensional. She is acknowledging that rather than continuing to be the mover and shaker, she was unable to keep up. The entire world changed, and left her behind.

This is her trying. This is her new avenue. Experimentation is new genres. Stepping away from the pop which has not served her well in the last two eras. No Grammy etc.

Option 2:"The cycle"

Everyone else

Option 3:"The graph"

Taylor, very ahead of the curve

Option 4:"The space filling curve"

SHAPE REPRESENTATIONS IN 2D

Points + Connectivity + Piecewise flat interpolation

Points + Connectivity + Polynomial interpolation

SHAPE REPRESENTATIONS IN 3D

Points + Connectivity + Piecewise flat interpolation

Points + Connectivity + Polynomial interpolation

Point cloud

Point cloud

Point cloud

x
Connectivity?

Point cloud

Why use point clouds at all?

Point cloud

3D scanning

Point cloud

[^0]Point cloud

3D scanning

Point cloud

3D scanning

Point cloud

3D scanning

Point cloud

3D scanning

Point cloud

An autonomous car only sees point clouds

Your phone only sees point clouds

Your phone only sees point clouds

Art scanners only see point clouds

Art scanners only see point clouds

Art scanners only see point clouds

Welcome to the 3D Scanning Frontier

The 3D Program is a small group of technologists working within the Smithsonian Institution Digitization Program Office. We focus on developing solutions to further the Smithsonian's mission of "the increase and diffusion of knowledge" through the use of three-dimensional capture technology, analysis tools, and our distribution platform.

Ground surveyors only see point clouds

Ground surveyors only see point clouds

3D scanning has become increasingly popular

"3D Scanning Applications in Medical field: A Literature-based Review" Haleem et al. 20 I 8

[^1]

This is a conservative minimum strike count. Data is cross-referenced against local media reports, however many strikes are un- or under-reported Source The Bureau of Investigative Journalism
OFT

Driver Charged in Uber's Fatal 2018 Autonomous Car Crash

The Horrible Things That Happen to Trans People Going Through Airport Security

[^2]
Point cloud

Main representation for captured geometry

Point cloud

Main representation for captured geometry

Research questions include:

Point cloud

Main representation for captured geometry

Research questions include:

How to segment a point cloud?

Fig. 2: LiDAR Projections. Note that each channel reflects structural information in the camera-view image.

$$
\text { "SqueezeSeg: [...]" Wu et al. } 2017 \text { CVPR }
$$

Point cloud

Main representation for captured geometry

Research questions include:

How to segment a point cloud?

How to convert a point cloud?

Figure 2: Points from scans of the "Armadillo Man" model (left), our Poisson surface reconstruction (right), and a visualization of the indicator function (middle) along a plane through the 3D volume.

Point cloud

Main representation for captured geometry

Research questions include:

How to segment a point cloud?

How to convert a point cloud?

How to define operators on a point cloud?

SHAPE REPRESENTATIONS IN 3D

Points + Connectivity + Piecewise flat interpolation

Points + Connectivity + Piecewise flat interpolation

Triangle mesh

Quad mesh

Mesh

Most common shape representation

Most common shape representation

Most common shape representation

Easiest to work with for most applications

Developability of Triangle Meshes

ODED STEIN and EITAN GRINSPUN, Columbia University
KEENAN CRANE, Carnegie Mellon University

Fig. 1. By encouraging discrete developability, a given mesh evolves toward a shape comprised of flattenable pieces separated by highly regular seam curves.

Most common shape representation
Easiest to work with for most applications
Very hard/impossible to capture directly

[^3]

Most common shape representation

Easiest to work with for most applications

Very hard/impossible to capture directly

[^4]

Most common shape representation
Easiest to work with for most applications

Very hard/impossible to capture directly

Digital design or converted point clouds

Most common shape representation

Easiest to work with for most applications

Very hard/impossible to capture directly
Digital design or converted point clouds

SHAPE REPRESENTATIONS IN 3D

Points + Connectivity + Polynomial interpolation

Points + Connectivity + Piecewise polynomial interpolation

Points + Connectivity + Piecewise polynomial interpolation

Parametric surface

Curved surface

Freeform surface

Surface spline

CAD surface

NURBS

Used in discipline that value extreme precision

Parametric surface

Used in discipline that value extreme precision

Industrial machines can fabricate them

Parametric surface

Used in discipline that value extreme precision

Industrial machines can fabricate them

Everything else: really complicated

Parametric surface

The Shape Matching Element Method: Direct Animation of Curved Surface Models

TY TRUSTY, University of Toronto, Canada
HONGLIN CHEN, University of Toronto, Canada
DAVID I.W. LEVIN, University of Toronto, Canada

Fig. 1. Using the shape matching element method we can directly simulate chis NURBS surface model of a bouncy castc as a volumetric clastic object without the need for volumetric meshing of any kind.

Used in discipline that value extreme precision

Industrial machines can fabricate them

Everything else: really complicated

Main research questions:

How to do [thing we know how to do on meshes] with parametric surfaces?

The Shape Matching Element Method: Direct Animation of Curved Surface Models

TY TRUSTY, University of Toronto, Canada
HONGLIN CHEN, University of Toronto, Canada
DAVID I.W. LEVIN, University of Toronto, Canada

Fig. 1. Using the shape matching element method we can directly simulate this NURBS surface model of a bouncy castle as a volumetric elastic object without the need for volumetric meshing of any kind.

SHAPE REPRESENTATIONS IN 3D

Implicit surface

Implicit surface

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}-1
$$

Implicit surface

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}-1
$$

$$
f=0
$$

Implicit surface

(c)

Implicit surface

(c)

\downarrow Use machine learning

- Easy boolean operations
N....almost everything else

Implicit surface

Used when fast boolean operations are necessary

Used when fast boolean operations are necessary

Implicit surface

Used when fast boolean operations are necessary

Used when fast boolean operations are necessary

Swept Volumes via Spacetime Numerical Continuation

SILVIA SELLÁN, University of Toronto NOAM AIGERMAN, Adobe Research
ALEC JACOBSON, University of Toronto and Adobe Research

Implicit surface

Used when fast boolean operations are necessary

Used in machine learning applications

Implicit surface

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park ${ }^{1,3 \dagger} \quad$ Peter Florence $^{2,3 \dagger} \quad$ Julian Straub ${ }^{3} \quad$ Richard Newcombe ${ }^{3} \quad$ Steven Lovegrove 3

${ }^{1}$ University of Washington $\quad{ }^{2}$ Massachusetts Institute of Technology $\quad{ }^{3}$ Facebook Reality Labs

Implicit surface

Used when fast boolean operations are necessary
Used in machine learning applications
Research questions:

Implicit surface

Used when fast boolean operations are necessary
Used in machine learning applications
Research questions:

Massively Parallel Rendering of Complex Closed-Form Implicit Surfaces

Matthew J. Keeter, independent researcher
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2020

Figure 1: An assortment of implicit surfaces rendered using our technique. Left: an extruded text string, rotated and rendered as a heightmap. Center: a bear head sculpted using smooth blending operations, with normals found by automatic differentiation. Right: a complex architectural model rendered with screen-space ambient occlusion and perspective. All models are rendered directly from their mathematical representations, without triangulation or raytracing

Implicit surface

Used when fast boolean operations are necessary
Used in machine learning applications
Research questions:
How to render an implicit?
How to deform an implicit?

Non-linear sphere tracing for rendering deformed signed distance fields

${ }^{1}$ Dartmouth College ${ }^{2}$ University of Toronto ${ }^{3}$ McGill University

In ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 2019

Implicit surface

Used when fast boolean operations are necessary
Used in machine learning applications

\bigcircResearch questions:

How to render an implicit?
How to deform an implicit?
How to repair an implicit?

3D printing uses implicit shapes (even if they don't want you to know)

3D printing uses implicit shapes (even if they don't want you to know)

SURFACE REPRESENTATIONS IN 3D

Parametric surface

VOLUMETRIC REPRESENTATIONS IN 3D

Surface mesh

Triangle mesh

Quad mesh

Tetrahedral mesh

Hexahedral mesh

CURVES IN 3D

SPLINES IN 3D

SPLINES IN 3D

Autodesk 3ds Max 2013 Teapot Path Animation.max

SPLINES IN 3D

SURFACE REPRESENTATIONS IN 3D

Parametric surface

CONVERTING BETWEEN REPRESENTATIONS

T园

园 S
圆

国 4
圆

园（5）
图 告

國点各
园 虾

...SOME REALLY AREN'T!

...SOME REALLY AREN'T!

...SOME REALLY AREN'T!

...SOME REALLY AREN'T!

A SHAPE'S LIFE CYCLE

A SHAPE'S LIFE CYCLE

Artist quad mesh

Cage for collision detection

A SHAPE'S LIFE CYCLE

CT scan (implicit)

No

Diagnostic

TODAY'S LESSON

There are many shape representations, with different advantages and disadvantages

We can't control which representation a shape is in so we need to study all

Each representation leads itself to different research questions

Developing an intuition in 2D helps to understand 3D

MESH MATH AND BEYOND

On creating, storing and using geometry

WHAT'S THE PLAN NOW?

Earlier (and also now)

WHAT'S THE PLAN NOW?

[^0]: 3D scanning

[^1]: "Review of Laser Scanning Technologies and Applications" Soilán et al. 2019

[^2]: "Nine out of ten times l've gone through a body scanner, l've been flagged for having an 'abnormality in the groin region.'"

[^3]: "The first real object ever 3D scanned and rendered was a WV Beetle" by Jason Torchinsky

[^4]: "The first real object ever 3D scanned and rendered was aWV Beetle" by Jason Torchinsky

